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Real-Variable Characterizations and Its
Applications of Anisotropic Ball Campanato-Type
and Hardy-Type Spaces

ABSTRACT

The theory of function spaces and its applications is one of the central research topics
in harmonic analysis, playing a crucial role in disciplines such as differential equations and
geometric analysis. Particularly, the extension of classical function spaces appearing in
harmonic analysis from R" to anisotropic Euclidean spaces has found widespread applica-
tion in branches like wavelet analysis and partial differential equations. This dissertation
is dedicated to studying the real-variable properties and applications of anisotropic ball
Campanato spaces and Hardy spaces.

Let A be an expansive matrix, and X be a quasi-Banach function space on R", assum-
ing its specific convexification satisfies the Fefferman—Stein vector-valued inequality, and
the Hardy—Littlewood maximal operator is bounded on another specific convexification.
The research content of this dissertation is mainly divided into three aspects. Firstly,
some anisotropic ball Campanato function spaces related to A and X are introduced, and
it is proved that these spaces are the dual spaces of anisotropic Hardy spaces H )"% (R™)
associated with A and X. Furthermore, this dissertation establishes for the first time
the anisotropic Littlewood—Paley function characterizations of H f} (R™), proving that the
Fourier transform of a function f on H4(R") is uniformly continuous in distribution sense
with a continuous function F on R™, and provides a pointwise estimate of F', controlled
by the norm of f in the anisotropic Hardy space and a product related to an extension
matrix A of a step function. Combining the results of the Fourier transform of functions on
H#(R™), this dissertation establishes the Hardy-Littlewood inequality on H%(R™). Addi-
tionally, various norm equivalent characterizations of anisotropic ball Campanato function
spaces are established, and combined with the atomic decomposition of anisotropic tent
spaces related to A and X, the Carleson measure characterizations of anisotropic ball
Campanato function spaces are obtained. The key innovation of this dissertation is, em-
bedding the considered function space X into anisotropic weighted Lebesgue spaces with
specific weights and fully utilizing the known results of this weighted Lebesgue space to
overcome the inherent difficulties arising from the explicit expression of the quasi-norm
| - ||x and the lack of absolute continuity.

All the results of this dissertation have extensive generality, especially when applied
to Morrey spaces, Orlicz-slice spaces, Lorentz spaces, and Orlicz spaces, some of the results
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are entirely new. When applied to classical (variable and mixed-norm) Lebesgue spaces,
the obtained results either fundamentally improve existing results or are consistent with
the best known results. These results provide more working space and theoretical tools
for studying partial differential equations and (applied) harmonic analysis.

KEY WORDS: Expansive matrix, Ball quasi-Banach function space, Hardy spaces,
Campanato-type function spaces, Duality, Fourier transform.
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Chapter 1

Introduction

1

ﬂ

1.1 Background and a Short Summary

Recall that the dual theory of classical Hardy spaces on the Euclidean space R™ plays
an important role in many branches of analysis, such as harmonic analysis and partial
differential equations, and has been systematically considered and developed so far; see,
for instance, [34, 79]. Indeed, in 1969, Duren et al. [32] first identified the Lipshitz space
with the dual space of the Hardy space HP(ID) of holomorphic functions, where p € (0,1)
and the symbol D denotes the unit disc of C. Later, Walsh [94] further extended this
dual result to the Hardy space on the upper half-plane Rﬁlfl := R"™ x (0,00). On the
real Hardy spaces, the famous dual theorem, that is, the space BMO(R"™) of functions
with bounded mean oscillation is the dual space of the Hardy space H!(R"), is due to
Fefferman and Stein [34]. Moreover, it is worth pointing out that the complete dual
theory of the Hardy space HP(R™) with p € (0, 1] was given by Taibleson and Weiss [88],
in which the dual space of HP(R™) proves the special Campanato space introduced by
Campanato [16]. Also, in 1972, Fefferman and Stein [34] introduced a famous problem,
that is, what is the characterization of the Fourier transform fof a distribution f from
the classical Hardy space HP(R™). Recall that, in 1974, Coifman [23] characterized f via
the entire function of exponential type for n = 1, where f € HP(R) with p € (0, 1]. Since
then, many researchers investigated the characterization of fwith the distribution f from
Hardy spaces with n > 2; see, for instance, [9, 27, 37, 88]. In particular, Taibleson and
Weiss [88] proved that, for any given p € (0,1], the Fourier transform of f € HP(R")
coincides with a continuous function F' in the sense of tempered distributions and there
exists a positive constant C, independent of f and F', such that, for any = € R™,

n(l_
(L.1.1) [F(@)] < Cllf gyl .
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This further implies the following generalization of the Hardy—Littlewood inequality that

1/p
(1.1.2) [/ """ F(@)Pdz| < Ol fllarwn),

where C'is a positive constant independent of f and F' (see [86, p. 128]).

Recently, Sawano et al. [81] originally introduced the ball quasi-Banach function space
X which further generalizes the Banach function space in [3] in order to include weighted
Lebesgue spaces, Morrey spaces, mixed-norm Lebesgue spaces, Orlicz-slice spaces, and
Musielak—Orlicz spaces. Observe that the aforementioned several function spaces are not
quasi-Banach function spaces which were originally introduced in [3, Definitions 1.1 and
1.3]; see, for instance, [81, 84, 96, 104]. In the same article [81], Sawano et al. also intro-
duced the Hardy space Hx (R"™), associated with X, and established its various maximal
function characterizations by assuming that the Hardy-Littlewood maximal operator is
bounded on the p-convexification of X, as well as its several other real-variable character-
izations, respectively, in terms of atoms, molecules, and Lusin area functions by assuming
that the Hardy—Littlewood maximal operator satisfies a Fefferman—Stein vector-valued
inequality on X and is bounded on the associate space of X.

Later, Wang et al. [95] further established the Littlewood—Paley g-function and
the Littlewood-Paley g}-function characterizations of both Hx (R™) and its local version
hx(R™) and obtained the boundedness of anisotropic Calderén—Zygmund operators and
pseudo-differential operators, respectively, on Hx(R™) and hx(R™); Yan et al. [100] es-
tablished the dual theorem and the intrinsic square function characterizations of Hx (R");
Zhang et al. [103] introduced some new ball Campanato-type function space which proves
the dual space of Hx (R") and established its Carleson measure characterization. Very re-
cently, on spaces X of homogeneous type, Yan et al. [99, 98] introduced ball quasi-Banach
function spaces Y (X) and Hardy-type spaces Hy (&X'), associated with Y (X), and devel-
oped a complete real-variable theory of Hy (X'). For more studies about ball quasi-Banach
function spaces, this thesis refers the reader to [17, 51, 52, 80, 87, 90, 101].

On the other hand, starting from 1970’s, there has been an increasing interesting
in extending classical function spaces arising in harmonic analysis from R™ to various
anisotropic settings and some other domains; see, for instance, [22, 36, 38, 39, 42, 77, 85,
89, 91, 92]. The study of function spaces on R™ associated with anisotropic dilations was
originally started from the celebrated articles [13, 14, 15] of Calderén and Torchinsky on
anisotropic Hardy spaces. In 2003, Bownik [4] introduced and investigated the anisotropic
Hardy space HY(R") with p € (0,00), where A is a general expansive matrix on R™.
Since then, various variants of classical Hardy spaces over the anisotropic Euclidean space
have been introduced and their real-variable theories have been systematically developed.
To be precise, Bownik et al. [7] further extended the anisotropic Hardy space to the
weighted setting. Li et al. [59] introduced the anisotropic Musielak—Orlicz Hardy space
H%(R™), where ¢ is an anisotropic Musielak—Orlicz function, and characterized H ' (R™) by
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several maximal functions and atoms. Liu et al. [74, 76] first introduced the anisotropic
Hardy—Lorentz space HYY(R"™), with p € (0,1] and ¢ € (0,00|, and established their
several real-variable characterizations, respectively, in terms of atoms or finite atoms,
molecules, maximal functions, and Littlewood—Paley functions, which are further applied
to obtain the real interpolation theorem of H%(R™) and the boundedness of anisotropic
Calderén-Zygmund operators on H%?(R™) including the critical case. Liu et al. [66,
72] and Huang et al. [47] further generalized the corresponding results in [74, 76] to
variable Hardy spaces and mixed-norm Hardy spaces, respectively. Recently, Liu et al.
[73, 75] introduced the anisotropic variable Hardy—Lorentz space H Z(')’Q(R"), where p(-) :
R™ — (0, o0] is a variable exponent function satisfying the globally log-Ho6lder continuous
condition and ¢ € (0, ], and developed a complete real-variable theory of these spaces
including various equivalent characterizations and the boundedness of sublinear operators.
Independently, Almeida et al. [1] also investigated the anisotropic variable Hardy—Lorentz
space HP()40)(R™, A), where p(-) and ¢(-) are nonnegative measurable functions on (0, 00).
In [1], equivalent characterizations of HP()4()(R™ A) in terms of maximal functions and
atoms were established. It is remarkable that the anisotropic variable Hardy—Lorentz space
HP():9C)(R™, A) in [1] and that in [73, 75] can not cover each other because the variable
exponent p(-) in [1] is only defined on (0,00), instead of R™. Particularly, Huang et al.
[48, 49] further enriched the real-variable theory of anisotropic mixed-norm Campanato
spaces and anisotropic variable Campanato spaces and established the dual theory of both
anisotropic Hardy spaces Hf;(]R”) and Hg(')(]R”) with the full ranges of both p and p(+).
For more studies about function spaces on the anisotropic Euclidean space, this thesis
refers the reader to [5, 8, 20, 21, 56, 57].

Recall that the anisotropic Hardy space H )’?(R”) associated with both A and X was
first introduced and studied by Wang et al. [97], in which they characterized H4(R") in
terms of maximal functions, atoms, finite atoms, and molecules and obtained the bound-
edness of the anisotropic Calderén-Zygmund operators on H f} (R™). Motivated by this and
[103], a quite natural question arises: can this thesis proves whether or not the dual space
of H é (R™) is the anisotropic ball Campanato function space and characterize this space
by the Carleson measure? The main target of this article is to give an affirmative answer
to this question. Indeed, to answer this question and also to enrich the real-variable theory
of anisotropic ball Campanato spaces as well as anisotropic Hardy spaces associated with
both A and X, in this article, by borrowing some ideas from [103], namely considering
finite linear combinations of atoms as a whole instead of a single atom, this thesis intro-
duces the anisotropic ball Campanato function space and give some applications. Using
this and the additional assumptions that the Hardy—Littlewood maximal operator satis-
fies some Fefferman—Stein vector-valued inequality on X and is bounded on the associate
space of X, this thesis gets rid of the dependence on the concavity of || - ||x and prove
that the dual space of H )’% (R™) is just the anisotropic ball Campanato function space.
From this, this thesis further deduces several equivalent characterizations of anisotropic
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ball Campanato function spaces. Moreover, via embedding X into a certain anisotropic
weighted Lebesgue space, this thesis overcomes the difficulty caused by the absence of both
an explicit expression and the absolute continuity of the quasi-norm || - || x under consider-
ation and establish the anisotropic Littlewood—Paley characterizations of H )‘?(Rn), which,
together with the dual theorem of H f} (R™) and the atomic decomposition of anisotropic
tent spaces associated with X, finally implies the Carleson measure characterization of
anisotropic ball Campanato function spaces. Moreover, this thesis shows that the Fourier
transform fof feH Q(R”) coincides with a continuous function F' on R" in the sense of
tempered distributions and prove that an inequality similar to (1.1.1) also holds for any
f € H¢(R"). Furthermore, applying this and a technical inequality about the value of the
Fourier transform of atoms, this thesis further conclude a higher order convergence of the
continuous function F' at the origin and then show that an inequality similar to (1.1.2)
holds for H# (R™), which is a variant of the Hardy-Littlewood inequality in H4 (R™).

The remainder of this article is organized as follows.

In Section 1.2, this thesis recall some notation and concepts which are used throughout
this article. More precisely, this thesis first recall the definitions of the expansive matrix
A, the step homogeneous quasi-norm p, and the ball quasi-Banach function space X. Then
this thesis make some mild assumptions on the boundedness of the Hardy—Littlewood max-
imal operator on both X and its associate space, which are needed throughout this article.
Finally, this thesis recall the concept of the non-tangential (grand) maximal function.

The aim of Chapter 2 is to give the dual space of the anisotropic Hardy space H 3? (R™)
(see Theorem 2.2.6 below). To this end, in Section 2.1, this thesis first introduce the
anisotropic ball Campanato function space E‘;‘(’% 4.s(R™) (see Definition 2.1.3 below) and
give an equivalent quasi-norm characterization of E;‘Q a.d, s(R™) (see Proposition 2.1.5 be-
low). Using these, in Section 2.2 both the known atomic and the known finite atomic
characterizations of H ? (R™), and the assumptions that the Hardy-Littlewood maximal
operator satisfies some Fefferman—Stein vector-valued inequality on X and is bounded
on the associate space of X, this thesis proves that the dual space of H f} (R™) is just
Eﬁ, o d.0,(R™). At the end of this section, this thesis also give its invariance of E’;(’ o.ds(R™)
on different indices q and d; see Corollary 2.2.7 below.

In Chapter 3, this thesis establishes various real-variable characterizations of the
anisotropic Hardy space H )‘?(Rn). Section 3.1 is devoted to establishing the anisotropic
Littlewood—Paley function characterization of H4(R"), including the anisotropic Lusin
area function, the anisotropic Littlewood—Paley g-function, and the anisotropic Littlewood—
Paley g3-function, respectively, in Theorems 3.1.4, 3.1.5, and 3.1.6 below. This thesis first
prove Theorem 3.1.4. To this end, this thesis first show that the quasi-norms in X of
the anisotropic Lusin area functions defined by different Schwartz functions are equivalent
(see Theorem 3.1.7 below). Then, via borrowing some ideas from [76] and the anisotropic
Calderén reproducing formula (see Lemma 3.1.2 below), this thesis complete the proof of
Theorem 3.1.4. From this and an approach initiated by Ullrich [93] and further devel-
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oped by Liang et al. [65] and Liu et al. [73], together with Fefferman—Stein vector-valued
inequality on X, this thesis obtains the anisotropic Littlewood—Paley g-function and the
anisotropic Littlewood-Paley gy-function characterizations. The aim of Section 3.2 is to
prove the Fourier transform J?of feH f} (R™) coincides with a continuous function F' in
the sense of tempered distributions (see Theorem 3.2.1). In order to achieve this, this
thesis applies Lemmas 3.2.5 (some subtle estimates on derivatives of the Fourier trans-
form of the dilation of atoms) and 3.2.7 (some exquisite relations between the Euclidean
norm and the step homogeneous quasi-norm p under consideration) to establish a uniform
pointwise estimate for atoms (see Lemma 3.2.6). Then Theorem 3.2.1 is proved by this
and some real-variable characterizations from [97], especially the atomic decomposition of
H ? (R™). Applying the Fourier transform, in Section 3.3, this thesis presents some further
applications of Theorem 3.2.1. First, this thesis proves that the above function F' has a
higher order convergence at the origin (see Theorem 3.3.1). Second, this thesis shows that

InX_

PO min o (0] 7T g, (i

is L% (R"™)-integrable and a positive constant multiple of the anisotropic Hardy space norm
of f can uniformly control this integral. Thus, this thesis extends the Hardy—Littlewood
inequality to the setting of anisotropic Hardy spaces associated with ball quasi-Banach
function spaces (see Theorem 3.3.2).

In Chapter 4, this thesis establishes various real-variable characterizations of the
anisotropic ball Campanato space ﬁ?(,l,d,eo (R™). In Section 4.1, by applying the dual
result obtained in Theorem 2.2.6 and a key estimate (see Lemma 4.1.2 below), this thesis
obtains several equivalent characterizations of E’;‘(’ a.d.0 (R™) (see Theorems 4.1.1 and 4.1.3
below), which are further applied to establish the Carleson measure characterization of
ﬁff,lydﬂo (R™) in the next section. In Section 4.2, this thesis establishes the Carleson
measure characterization of Eé‘(,L d.0,(R") (see Theorem 4.2.3 below). Indeed, via using
Theorems 2.2.6, 4.1.1, and 3.1.4, as well as the atomic decomposition of anisotropic tent
spaces associated with X (see Lemma 4.2.7 below), this thesis shows that a measurable
function h belongs to Eﬁ‘(,l, .00 (R™) if and only if h generates an X—Carleson measure dpu.
Moreover, the norm of the X-Carleson measure dyu is equivalent to the E’;‘{’l, 4,0, (R™)-norm
of h.

In Section 5, this thesis applies all the main results obtained in the above sections to
several specific ball quasi-Banach function spaces, via verifying all necessary assumptions,
to seven concrete examples of ball quasi-Banach function spaces, respectively, Morrey
spaces (see section 5.1 below), Orlicz-slice spaces (see Subsection 5.2 below), Lorentz
spaces (see section 5.3 below), variable Lebesgue spaces (see section 5.4 below), mixed-
norm Lebesgue spaces (see Subsection 5.5 below), weighted Lebesgue spaces (see section
5.6 below), and Orlicz spaces (see section 5.7 below). Moreover, in Subsection 5.1, this
thesis give an example to show the limitation of Theorems 3.2.1, 3.3.1 and 3.3.2 on the
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Morrey space because its norm lacks concavity.

1.2 Notation

In this section, this thesis first makes some conventions on notation. Let N :=
{1,2,...}, Zy := NU {0}, Z% := (Z4)", and 0 be the origin of R". For any multi-
index a := (aq,...,a,) € Z"} and any = := (21,...,2,) € R", let |a| := a1 + -+ + an,
0" = (a%l)o‘1 (%)O‘”, and x® := x{" - - 2%, This thesis denotes by C a positive con-
stant which is independent of the main parameters involved, but may vary from line to
line. This thesis use C(,, ) to denote a positive constant depending on the indicated
parameters «, .... The symbol f < g means f < Cg. If f < gand g < f, this thesis then
write f ~ g. If f < Cgand g =h or g < h, this thesis then write f Sg=hor f < g < h.
For any ¢ € [1, 00|, this thesis denotes by ¢ its conjugate indez, that is, 1/¢ + 1/¢' = 1.
For any = € R", this thesis denotes by |z| the n-dimensional Fuclidean metric of x. If E
is a subset of R™, this thesis denotes by 1 its characteristic function and by EC the set
R™\ E. For any r € (0,00) and = € R", this thesis denotes by B(x,r) the ball centered
at x with the radius r, that is, B(z,r) := {y € R" : |z —y| < r}. For any ball B, this
thesis use zp to denote its center and rp its radius and this thesis denotes by AB for any
A € (0,00) the ball concentric with B having the radius Arg. This thesis also use € — 0T
to denote that there exists ag € (0,00) such that € € (0,ap) and € — 0. Let X and Y be
two normed vector spaces, respectively, with the norm || -||x and the norm ||-||y; then this
thesis use X < Y to denote X C Y and there exists a positive constant C' such that, for
any f € X, ||flly < C| fllx. At last, when this thesis proves a theorem (or the like), this
thesis always use the same symbols as those used in the statement itself of that theorem
(or the like).

Then this thesis recall some notation and concepts on dilations (see, for instance
[4, 43]) as well as ball quasi-Banach function spaces (see, for instance, [60, 61, 81, 95, 96,
100, 104]). This thesis begins with recalling the concept of the expansive matrix from [4].

Definition 1.2.1. A real n xn matrix A is called an ezpansive matriz (shortly, a dilation)
if
min |A| > 1,
A€o (A)

here and thereafter, o(A) denotes the set of all eigenvalues of A.
Let A be a dilation and
(1.2.1) b:=|det A,

where det A denotes the determinant of A. Let A := (a;;)1<i j<n be a dilation, then the
matrix norm is defined as

1411 = (D lagglH)'2.

ij=1
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tau

quasi-norm

Then it follows from [4, p. 6, (2.7)] that b € (1,00). By the fact that there exists an open
and symmetry ellipsoid A, with |[A| =1, and an r € (1,00) such that A C rA C AA (see
[4, p.5, Lemma 2.2]), this thesis finds that, for any k € Z,

(1.2.2) By, == AFA

is open, By, C By, C Byi1, and |By| = b*. For any € R” and k € Z, the ellipsoid z + By,
is called a dilated ball. In what follows, this thesis always lets B be the set of all such
dilated balls, that is,

(1.2.3) B:={x+By: xeR" keZ}
and let
(1.2.4) = inf{l €Z: v > 2} .

Let A_, A\ € (0, 00) satisfy that
(1.2.5) I <A <min{|A|: X€o(A)} <max{|A|: A€ o(4)} < ;.
This thesis point out that, if A is diagonalizable over R, then this thesis may let
A-i=min{|A\|: A€ 0o(A)} and Ay :=max{|A\|: A€ d(4)}.

Otherwise, this thesis may choose them sufficiently close to these equalities in accordance
with what this thesis needs in the arguments.
The following definition of the homogeneous quasi-norm is just [4, p. 6, Definition 2.3].

Definition 1.2.2. A homogeneous quasi-norm, associated with a dilation A, is a measur-
able mapping ¢ : R"™ — [0,00) such that

(i) o(x) = 0 <= = =0, where 0 denotes the origin of R";
(ii) o(Az) = bo(x) for any = € R™;

(iii) there exists an Ag € [1,00) such that, for any =,y € R,
oz +y) < Ao [e(x) + o(y)]-

In the standard Euclidean space case, let A := 2 I,,x, and, for any = € R", o(z) :=
|z|™. Then p is an example of homogeneous quasi-norms associated with A on R™. Here
and thereafter, I, x, always denotes the n x n unit matriz and |- | the Euclidean norm in
R™,

For a fixed dilation A, by [4, p. 6, Lemma 2.4], this thesis defines the following quasi-
norm which is used throughout this article.



Definition 1.2.3. Define the step homogeneous quasi-norm p on R", associated with the
dilation A, by setting

v* if x € Byy1\B,
p(z) ==
0 ifz=0,

where b is the same as in (1.2.1) and, for any k € Z, By the same as in (1.2.2).

Then (R"™, p,dz) is a space of homogeneous type in the sense of Coifman and Weiss
[25], where dx denotes the m-dimensional Lebesgue measure. For more studies on the
real-variable theory of function spaces over spaces of homogeneous type, this thesis refers
the reader to [10, 11, 12, 62, 63, 64].

Throughout this article, this thesis always lets A be a dilation in Definition 1.2.1, b
the same as in (1.2.1), p the step homogeneous quasi-norm in Definition 1.2.3, B the set
of all dilated balls in (1.2.3), .Z (R") the set of all measurable functions on R™, and By, for
any k € Z the same as in (1.2.2). Now, this thesis recall the definition of ball quasi-norm
Banach function spaces (see [81]).

Definition 1.2.4. A quasi-normed linear space X C .# (R"), equipped with a quasi-norm
|| - || which makes sense for the whole .Z (R"), is called a ball quasi-Banach function space
if it satisfies

(i) for any f € #(R™), ||f|lx = 0 implies that f = 0 almost everywhere;
(ii) for any f,g € A4 (R"), |g| < |f| almost everywhere implies that ||g||x < | flx;

(iii) for any {fm}men C AZ(R") and f € A (R™), 0 < fn, T f as m — oo almost
everywhere implies that || fn||x T || f]|lx as m — oo;

(iv) 1p € X for any dilated ball B € B.

Moreover, a ball quasi-Banach function space X is called a ball Banach function space
if it satisfies:

(v) forany f,g € X, |f +gllx < |Ifllx + llgllx;

(vi) for any given dilated ball B € B, there exists a positive constant C'p) such that, for
any f € X,

/B (@) de < Cu 1]

Remark 1.2.5. (i) As was mentioned in [97, Remark 2.5(i)], if f € .#(R"), then
IIfllx = 0 if and only if f = 0 almost everywhere; if f,g € .#(R"™) and f = g almost
everywhere, then || f||x ~ ||g||x with the positive equivalence constants independent
of both f and g.



(ii) As was mentioned in [97, Remark 2.5(ii)], if this thesis replaces any dilated ball
B € B in Definition 1.2.4 by any bounded measurable set E or by any ball B(z,r)
with € R" and r € (0, 00), this thesis obtains its another equivalent formulation.

(iii) By [30, Theorem 2], this thesis finds that both (ii) and (iii) of Definition 1.2.4 imply
that any ball quasi-Banach function space is complete.

Now, this thesis recall the concepts of the p-convexification and the concavity of ball
quasi-Banach function spaces, which is a part of [81, Definition 2.6].

Definition 1.2.6. Let X be a ball quasi-Banach function space and p € (0, 00).

bbf

(i) The p-convezxification XP of X is defined by setting
XP:={feadR"): |fIP e X}
equipped with the quasi-norm || f||xr := |Hf|p||§(/p.

(ii) The space X is said to be concave if there exists a positive constant C' such that, for
any {f}ren C A (R"),
e.) o0
S llfellx < C DI
k=1 k=1

In particular, when C' = 1, X is said to be strictly concave.

X

The associate space X’ of any given ball Banach function space X is defined as follows;
see [3, Chapter 1, Section 2] or [81, p.9].

Definition 1.2.7. For any given ball Banach function space X, its associate space (also
called the Kothe dual space) X' is defined by setting

X' = {f e ARY): |[fllx= sup  [[fgllpigny < 00}7

9€X, |lgllx=1
where || - || x is called the associate norm of || - || x.

Remark 1.2.8. From [81, Proposition 2.3], this thesis deduces that, if X is a ball Banach
function space, then its associate space X’ is also a ball Banach function space.

Next, this thesis recall the concept of absolutely continuous quasi-norms of X as
follows (see [95, Definition 3.2] for the standard Euclidean space case and [99, Definition
6.1] for the case of spaces of homogeneous type).

Definition 1.2.9. Let X be a ball quasi-Banach function space. A function f € X is
said to have an absolutely continuous quasi-norm in X if || f1g;[|x | 0 whenever {E;}72,
is a sequence of measurable sets satisfying £; D Ej;1 for any j € N and ﬂ;‘;l E; =0.
Moreover, X is said to have an absolutely continuous quasi-norm if, for any f € X, f has
an absolutely continuous quasi-norm in X.



Now, this thesis recall the concept of the Hardy—Littlewood maximal operator. Let
Ll (R™) denote the set of all locally integrable functions on R™. Recall that the Hardy-
Littlewood mazximal operator M(f) of f € L _(R") is defined by setting, for any = € R",

loc

M@ i=swp swp £ |l = sup F [7()]dz
k€Z yex+By Jy+ By rzeBeBJB
where B is the same as in (1.2.3) and the last supremum is taken over all balls B € B. For
any given a € (0,00), the powered Hardy-Littlewood mazimal operator M@ is defined by
setting, for any f € Ll (R") and z € R",

MEO(f)(x) == {M(fI7) (2)}= .

Throughout this article, this thesis also need the following two fundamental assump-
tions about the boundedness of M on the given ball quasi-Banach function space and its
associate space.

Assumption 1.2.10. Let X be a ball quasi-Banach function space. Assume that there
exists a p_ € (0,00) such that, for any p € (0,p—) and u € (1,00), there exists a positive
constant C', depending on both p and u, such that, for any {fx}32, C .#Z(R"),

{Z[Mw)}“} sc{zw}u
k=1 k=1

Remark 1.2.11. Let X be a ball-Banach function space. Suppose that M is bounded
on X and that M is bounded on X’. By an argument similar to that used in the proof of
[26, Theorem 4.10], this thesis obtains that M satisfies Assumption 1.2.10 with p_ = 1.

u

1 1
Xp Xp

In what follows, for any given p_ € (0,00), this thesis always lets

(1.2.6) p :=min{p_,1}.

Assumption 1.2.12. Let p_ € (0,00) and X be a ball quasi-Banach function space.
Assume that there exists a 0y € (0,p), with p the same as in (1.2.6), and a pg € (6o, c0)
such that X1/% is a ball Banach function space and, for any f € (X 1/ Ooyr,

[mmenip) < Clf sy

(X1/90 )/
. e . 1 1 —
where C is a positive constant, independent of f, and 2078 T oraey = 1.

Next, recall that a Schwartz function is a function ¢ € C*°(R"™) satisfying that, for
any k € Z, and any multi-index o € Z,

(1.2.7) @llae := sup ()] |07 ()] < oo.
TxeR™

10



Denote by S(R™) the set of all Schwartz functions, equipped with the topology determined
by {I| - lla,k}taezn kez, . Then S'(R") is defined to be the dual space of S(R"), equipped
with the weak-* topology. For any N € Z, let

Sn(R™) = {p € SR : |lpllas < 1,]a] < Nk < N},
equivalently,

v € Sy(R™)

— |@llsy@n) = sup sup max{L, [p(z)]"}0(x)| < 1.
la|<N z€R™

In what follows, for any ¢ € S(R") and k € Z, let () := b~Fp(A7F.).

Definition 1.2.13. Let ¢ € S(R") and f € S'(R™). The non-tangential mazimal function
M (f) with respect to ¢ is defined by setting, for any z € R,

My (f)(z) = S |f *or(y)] -
Y& k

Moreover, for any given N € N, the non-tangential grand maximal function My(f) is
defined by setting, for any = € R",

(1.2.8) My(f)@) = sup  My(f)(a).

pESN (R™)

11



Chapter 2

Duality between H %(R”) and

A n
£X7q/7d7(90 (R )

2.1 Definition of Anisotropic Ball Campanato Function Spaces

Hardy space H § (R™) associated with ball quasi-Banach function space X . This description

In this section, this thesis provides a description of the dual space of the anisotropic

is a consequence of the definition of the anisotropic ball Campanato function space, the
atomic and the finite atomic characterizations of H(R™) from [97], as well as some basic
tools from functional analysis. To state the dual theorem, this thesis first present the
definition of H%(R™) from [97] as follows. In what follows, for any o € R, this thesis
denotes by |«] the largest integer not greater than a.

HXA | Definition 2.1.1. Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 1.2.10 with p_ € (0,00) and Assumption 1.2.12 with the same p_,
o € (0,p), and po € (Ao, o0), where p is the same as in (1.2.6). Assume that

(2.1.1) NeNn H<910—1> mlab_)J —|—2,oo>.

The anisotropic Hardy space H )‘4}7 ~(R™), associated with both A and X, is defined by
setting

Hg ny(R"):={f € S'R") : [|[Mn(f)lx < oo},
where My (f) is the same as in (1.2.8). Moreover, for any f € H)‘?,N(R”), let

1l amy = IMN () x -

Let A be a dilation and X the same as in Definition 2.1.1. In the remainder of this
article, this thesis always lets

(2.1.2) Nx.4 = K;O - 1) lnlab_)J +2.

12




Remark 2.1.2. (i) As was mentioned in [97, Remark 2.17(i)], the space H)‘?’N(]R”) is
independent of the choice of N as long as N € NN[Nx, 4,00). In what follows, when
N € NN [Nx, 4,00), this thesis writes Hy y(R™) simply by Hg(R").

(ii) This thesis point out that, if A := 21,x,, then H%(R") coincides with Hx (R")
which was introduced by Sawano et al. in [81].

In what follows, for any d € Z, P4(R™) denotes the set of all the polynomials on R"
with degree not greater than d; for any ball B € B and any locally integrable function
g on R™ this thesis use ng to denote the minimizing polynomial of g with degree not
greater than d, which means that Pgg is the unique polynomial f € P4(R™) such that, for
any h € Py(R"),

/ [g(x) — f(x)]h(x) dx = 0.
B

Next, this thesis introduces the anisotropic ball Campanato function space associated
with the ball quasi-Banach function space. In what follows, this thesis use L{ . (R") to
denote the set of all g-order locally integrable functions on R™.

Definition 2.1.3. Let A be a dilation, X a ball quasi-Banach function space, g € [1, 00),
d € Zy,and s € (0,00). Then the anisotropic ball Campanato function space Eﬁ’q’d’s(Rn),
associated with X, is defined to be the set of all the f € L{ (R™) such that

m

)\Z S s
IFllcg , ny = sup {Z [ } lB(i)}
=1 x

Mpallx

z Bl [
Ilganllx Lo

is finite, where the supremum is taken over all m € N, {BU) }y € B, and {A;}L C
(0, 00).

fl@) = Pho @) dm} %

Remark 2.1.4. Let A, X, ¢, d, and s be the same as in Definition 2.1.3.

(i) If this thesis has the basic assumption that ’HZZﬂW]SlB(U}%H)_{I € (0, 00),
B 1
the indice m in Definition 2.1.3 can be chosen as oo; see Proposition 2.1.5 below.
(ii) Obviously, Py(R™) C EquS(]R”). Indeed, ||f||LA s @) = = 0 if and only if f €
Pa(R™). Throughout this article, this thesis always identify f € L% ad.s(R") with
{f+P: PecPy(R")}.

(iii) For any f € L] (R™), define

m )\ S
I1fllleg, , @n) = supinf {Z [] 13(1‘)}

2 ipollx

1—1
s

X

13



X[ BY)] R
Z, |, o - P ]

1z llx

where the supremum is taken the same way as in Definition 2.1.3 and the infimum
is taken over all P € Py(R™). Then, similarly to the proof of [100, Lemma 2.6]
with using [4, p.49, (8.9)] instead of [100, Lemma 2.5], this thesis easily find that
IE |||£A s (B) is an equivalent quasi-norm of EXq a.s(R™).

Moreover, for the anisotropic ball Campanato function space £‘)4( a.d, s(R™), this thesis
has the following equivalent quasi-norm.

Proposition 2.1.5. Let A, X, q, d, and s be the same as in Definition 2.1.3. For any
fe Ll (R"), define

1

)\Z S E]

Hf”LA oo (R7) 7= SUP {Z [ } 13(2‘)}
i€N

-1

Mg llx
X

A;|BY) ‘
“2 Tl B i) - P s ad]

150 |lx

where the supremum is taken over all {B(j)}jeN C B and {\j}jen C (0,00) satisfying that

s

Aj s
(2.1.3) > [’1)] 1z0) € (0,00).
jeN B(J)HX
X
Then, for any f € L{ (R™),
Fles, @ =Ifles, @

Proof. Let f € LL_(R™). Obviously,

(2.1.4) IFllee , mm < Hsz:;‘( s (R

Conversely, let {BW};cy € B and {\;}jen C (0, 00) satisfy (2.1.3). From Definition
1.2.4(iii), it follows that

1—1

m )\ s s
lim Z] 150
Moo {;[ngmﬂx b
X
z BT
11z llx [/BW)

14
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-1

)\4 S %
1

> || 1ge

{. [HleuX] B”}
ieN X

L
HleHx BU)

JEN

) = Pho )| ]

Therefore, for any € € (0, 00), there exists an my € N such that

1—1

{Z [ngi\;HX] 1B(i)}
ieN .
\j|BW|
Z < pwlx []{BW
mo VT [
) {i_zl|:||1B(i)||X:| le}
X
\j|BYW|
Z 1w llx []ém

<Wleg .

) = Pl o) da]

f(z) — Pg(j)f(a:)‘q dx} +e
CORNSE

which, together with the arbitrariness of both {BW}cny € B and {\j}jen C (0,00)
satisfying (2.1.3) and ¢ € (0, 00), further implies that

Hf”z;A g.d.s(R™) < Hf”z;‘(qd (R™)*
This, combined with (2.1.4), then finishes the proof of Proposition 2.1.5. O

Then this thesis introduces another anisotropic ball Campanato function space £4 Xa, 4(R™)
associated with the ball quasi-Banach function space X.

Definition 2.1.6. Let A be a dilation, X a ball quasi-Banach function space, ¢ € [1, c0),
and d € Zy. Then the Campanato space Eﬁ 7 4(R™), associated with both A and X, is
defined to be the set of all the f € L{ (R™) such that

17lle = BeB||1BHX {][ ’f ~ P )’ dx} =

where the supremum is taken over all balls B € B and Pg f denotes the minimizing

polynomial of f with degree not greater than d.

Remark 2.1.7. Let A, X, q, d, and s be the same as in Definition 2.1.3.

15



basicine

(i) From Definitions 2.1.3 and 2.1.6, it immediately follows that £45 gds@®") C £4 4aR
and this inclusion is continuous.

(ii) For any f € L (R"), define

. B q
fllleq gy =sup e D [][ (@) - P@)" de] "

PR pemen) Tallx
Then, similarly to [100, Lemma 2.6], this thesis finds that ||| - H|£34< L(Rny 18 an
'q5

equivalent quasi-norm of £4 adB).
Now, this thesis give a basic inequality which is used throughout this article.
Lemma 2.1.8. Let {a;}ien C [0,00). If a € [1,00), then
(e
(Ze) =z
i€N i€N
The following proposition shows that, if the ball quasi-Banach function space X is

concave and s € (0, 1], then the space E‘;‘(,q’ 4.s(R™) coincides with E‘;‘(’ 4.4(R™) introduced
in Definition 2.1.6.

Proposition 2.1.9. Let X be a concave ball quasi-Banach function space, q € [1,00),
deZy, and s € (0,1]. Then

(215) Eé(,q,d,s(Rn) - ﬁé(,q,d(Rn)
with equivalent quasi-norms.

Proof. This thesis first show that

(2.1.6) ﬁqu( ") C ﬁX ads(R™)

and the inclusion is continuous. For this purpose, let f € E§ 4 4(R™). Then, from the
assumptions that X is concave, Definitions 1.2.4(ii) and 1.2.6(ii), and s € (0, 1], together
with Lemma 2.1.8, this thesis deduces that

- ;| BU
IFllze  , ny S sup (Z Ai) Z | |
i=1

|]-B(J)||X
x [][
B
m -1 m
< sup (Z M) > il flles, @m =Iflles @y
i=1 j=1
where the supremum is taken over all m € N, {BU) }Ly C B, and {A;}7L, C (0,00). This

further implies (2.1.6). Combining (2.1.6) and Remark 2.1.7(i), this thesis obtains (2.1.5),
which completes the proof of Proposition 2.1.9. O

) = Pl o) da]
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2.2 Duatlity Theorem

In this section, this thesis establishes the relation between L’)AC a.d.s (R™) and H ?(R”).

To this end, this thesis first recall the definitions of the anisotropic (X, ¢, d)-atom and the

anisotropic finite atomic Hardy space HQ’%{ﬁ (R™) from [97, Definitions 4.1 and 5.1].

Definition 2.2.1. Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 1.2.10 with p_ € (0, 00) and Assumption 1.2.12 with the same p_, 0y €
(0,p), and po € (o, 00), where p is the same as in (1.2.6). Assume that N € NN[Nx, 4,00)
with Ny, 4 the same as in (2.1.2). Further assume that ¢ € (max{pg, 1}, cc] and

(2.2.1) de H(;O — 1) mlgl;_)J ,oo) NZy.

(i) An anisotropic (X, q,d)-atom a is a measurable function on R" satisfying that

(i)1 supp a := {z € R": a(x) # 0} C B, where B € B and B is the same as in
(1.2.3);
1 —
(D2 llallza@ny < [Bl7|1ply"s
(1)3 [gn a(x)z?dz = 0 for any v € Z' with |y| < d, here and thereafter, for any

o,

vi={1 W €L, Y=+ and 27 =2t

(ii) The anisotropic finite atomic Hardy space HQ’%{ﬁ (R™), associated with both A and

X, is defined to be the set of all the f € S'(R") satisfying that there exists a K € N,
a sequence {\;}X, C (0,00), and a finite sequence {a;}X, of anisotropic (X, ¢, d)-
atoms supported, respectively, in {B (i)}i[il C B such that

K
= Z i@
i=1
Moreover, for any f € Hﬁzcﬁz (R™), define
1
K 6o %o
Ailga) ™
Fll yaad ony := inf [ )
11t g 2 Tyl
= X
where the infimum is taken over all the decompositions of f as above.

Let A be a dilation and X the same as in Definition 2.2.1. In the remainder of this
article, this thesis always lets

(2.2.2) dx, A = KHlo - 1) lnl(n)\b_)J .

To establish the dual theorem of H )‘?(R”), this thesis needs its atomic and its finite
atomic characterizations as follows, which are simple corollaries of [97, Theorem 4.2 and

Lemma 7.2] and [97, Theorem 5.4], respectively.

17



finatomth

Lemma 2.2.2. Let A, X, q, d, and 0y be the same as in Definition 2.2.1. Further assume
that X has an absolutely continuous quasi-norm, {a;}jen is a sequence of anisotropic
(X, q,d)-atoms supported, respectively, in the balls {BY)} ey C B and {\;}jen C (0,00)
such that

A, 1% g
Z |:J:| lB(]-) < o0.

2 [ Tpollx
X

Then the series f := Y .oy Aja; converges in H{(R™Y), f € HE(R™), and there exists a
positive constant C, independent of f, such that

1

90

N 1%
1l g ny < C []} 150)
’HX(R) jzel:\f 1150 |x BY
X

Lemma 2.2.3. Let A, X, q, d, 0y, and py be the same as in Definition 2.2.1.

(1) Ifq € (max{po, 1},00), then ||| ;a.0.a (") and || - HH),?(RTL) are equivalent quasi-norms
X, fin

A7 7d .
on HX,%D (R™) ;

(ii) || - HHA,oo,d(Rn) and || - HHQ(RH) are equivalent quasi-norms on Hﬁ’gd(R”) NC(R™),
X,fin )

where C(R™) denotes the set of all continuous functions on R™.
The following conclusion is also needed for establishing the dual theorem.

Proposition 2.2.4. Let A, X, and d be the same as in Definition 2.2.1. Then the set
H;?’Ei’d(R") NC(R™) is dense in Hé (R™).

Proof. From [97, Lemma 7.2], it easily follows that HQ’?H’d(R") is dense in H¢ (R™). Thus,
to show that H;}’ﬁ;d(R”) NC(R™) is also dense in H4 (R™), it suffices to prove that the set
HQ:?Ad(R”) NC(R™) is dense in H}?:?Ad(R") with the quasi-norm || - HH;} (rny- To this end,
this thesis only need to show that, for any given anisotropic (X, oo, d)-atom a supported
in the anisotropic ball B := xg + B;, with g € R" and iy € Z,

(2.2.3) kgrjloo la — ¢x * a”HQ(]Rn) =0,

where ¢ € S(R") satisfies [p, ¢(x)dr = 1 and supp ¢ C By. Let s € (max{1,po},00)
with pg the same as in Definition 2.1.1. Observe that, for any k € (—o0,0] N Z,

1
‘Bmax{io,O}—&—T‘ s (a — Pk * a)
X204 Bonasig.op - 1 x 1@ = @1 % all s )

18



is an anisotropic (X, s, d)-atom supported in the anisotropic ball zy + Bryax{io,0y 47, which,
combined with Lemma 2.2.2, further implies that

11204 Bunas(ig 0y 1 1x [@ = 1 * al| s ()

r'k H R7?) ~ 1
’ max{io,O}—H ‘

S lla — ¢k * allps (mn)-

From this and [4, p.15, Lemma 3.8], this thesis deduces (2.2.3), which then completes the
proof of Proposition 2.2.4. O

The following technical lemma is just [4, p.49, (8.9)] (see also [70, Lemma 3.4]). For
the sake of completeness, this thesis give its proof below.

Lemma 2.2.5. Let f € L _(R"), d € Z, and B be an anisotropic ball in B. Then there
exists a positive constant C', depending only on d, such that

sup |P&f(z <C][]f )| dx.

zeEB

Proof. Let {Py}reqo,... ay be the standard orthogonal polynomials of L?(B) satisfying P, C
Pr(R™) and, for any k € {0,--- ,d},

1 when j =k,
/ Py(z)Pj(z) de =
B 0 when j # k.

This thesis have the unique decomposition of Pg f,
PLf:=aqPy+ -+ agPy,
where ag, ...,ap € R. Thus, this thesis has, for any k € {0,...,d},
ay = /B ay P (x)Py(x) de = / P4 () Py(z) dz
— [ t@Pia)do < sup Pa) [ [ @)l

This further implies that, for any = € B,

d d
P < 3 ool < D o ) / (@) da

<§:‘B,/|f )da = f | 1) da.

By the arbitrary of x, this thesis complete the proof of Lemma 2.2.5. O
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Now, this thesis proves that the dual space of H%(R") is £§(,q’,d,90 (R™).

Theorem 2.2.6. Let A, X, q, d, and 0y be the same as in Definition 2.2.1. Further
assume that X has an absolutely continuous quasi-norm. Then the dual space of HQ (R™),
denoted by (H{(R™))*, is E‘;‘(’q,’d’(,o (R™) with 1/q+ 1/q' =1 in the following sense:

i) Let g€ L4, R™). Then the linear functional
X?q 7d700

(2.2.4) Lyt f L= | f@o()da.

initially defined for any f € H)‘? %i (R™), has a bounded estension to H{(R™).

(ii) Conversely, any continuous linear functional on H{(R™) arises as in (2.2.4) with a
unique g € Eé(,q’,d,@g (R™).

MOT€0U€T7 ”g”ﬁf(,q’,d,@()

independent of g.

®Rn) ™ HLQH(HQ(R"))*: where the positive equivalence constants are

Proof. This thesis first show (i) in the case ¢ € (max{1,po},oc0) with py the same as in
Definition 2.2.1. To this end, let g € ‘C;l(,q’,d,eo (R™). For any f € H)’? qﬁz (R™), by Definition
2.2.1, this thesis know that there exists a sequence {)\;}7"; C (O o0) and a sequence
{a; }}”:1 of anisotropic (X, ¢, d)-atoms supported, respectively, in the balls { BU }m ,CB
such that f = > 1", A\ja; and

1

)

m )\ 6o
S [] wo f | ~ gy
i=1 a

Mg llx
X

From these, the vanishing moments of a;, the Holder inequality, the size condition of a;,
Remark 2.1.4(ii), Lemma 2.2.3(i), and Definition 2.1.3 with ¢ replaced by ¢/, s replaced
by 6y, it follows that

(225)  |Ly(f)] =

—3")  inf | g
Z Pe71313 Rn) /;(],) aj (CL‘) [g(x) (.CE)] €T
< ; Mlagliaeer p iut [ late) = P

NIBYL [][ , ]q
) it z) — P(z)|? dx
Z ||1B(J)||X Pepd(Rn) BG) |g( ) ( )|
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m s 0o %
(2
S {Z [’ ] lB(i)} ngﬁﬁ,q/,d,%(w)
X

— Mpolx

~ Hf||H§:%Z (Rn)HgH£§ Rn) ™ ”fHH;g(Rn)||9||L;‘(7q/7d,90(Rn)-

,q/,d,BO(
Moreover, by [97, Lemma 7.2] and the assumption that X has an absolutely continuous
quasi-norm, this thesis finds that Hﬁ’%{g (R") is dense in H%(R™). This, together with
(2.2.5) and a standard density argument, further implies that, when ¢ € (max{1, pg}, 00),
(i) holds true and

HLgH(Hg(Rn))* S Hg”ﬁﬁ} (R™)

,q’,d,00

with the implicit positive constant independent of g.

This thesis next prove (i) in the case ¢ = co. Indeed, using Proposition 2.2.4 and
repeating the above proof for any given ¢ € (max{1, po}, 00), this thesis then conclude that
any g € E’)“m’ 4.0,(R") induces a bounded linear functional on H 4(R™), which is initially

defined on H)‘?’?ic;d(]R”) N C(R™) and given by setting, for any ¢ € H;’?fn’d(R") NC(R™),

(2.2.6) Ly: 0 Lg(0) = - (x)g(x) dx,

and then has a bounded linear extension to H%(R"). Let g € 0)4(,1, 2.0o(R"). Thus, it

remains to show that, for any f € Hﬁfr;d(]R”),

(2.2.7) Ly(f) = . f(z)g(z) dx.
To this end, suppose f € HA:C;;’d(R") and supp f C xo+ Bj, with zg € R™ and ig € Z. Let
¢ € S(R™) satisfy supp ¢ C By and [p, ¢(x)dx = 1. Letting s € (max{1,po}, o0), by the
proof of Proposition 2.2.4, this thesis finds that, for any k € (—o0,0]NZ and f € L*(R"),

(2.2.8) pux f € Hym(R") NC(R)
and
(2:2.9) lim 1f = o * fHLS(]Rn) =0.

k€(—00,0|NZ, k——o0

From this and the Riesz lemma (see, for instance, [35, Theorem 2.30]), it follows that there
exists a subsequence {kj}neny C (—00,0] NZ such that limy,_, . kp, = —o0 and, for almost
every x € R",

o, f(z) = f(2).
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By (2.2.9) and an argument similar to that used in the proof of Proposition 2.2.4, this
thesis concludes that limy,_,o || f — @k, >|<f||H§ (rny = 0, which, combined with Lemma 2.2.2,
(2.2.8), (2.2.6), the fact that

|(‘pkh * f)g| < Hf||L°°(R")1$0+Bmax{io,o}+f|g| € Ll(Rn)7

and the Lebesgue dominated convergence theorem (see, for instance, [35, Theorem 2.24]),
further implies that

Lyf) = Jim Ly(on, = £) = Jim [, f@)g(o) do
= [ st s
Rn

This finishes the proof of (2.2.7) and hence (i) in the case ¢ = co. Moreover, repeating
the proof in (2.2.5), this thesis obtains, for any ¢ € (max{1, pg}, 00|,

(2.2.10) ”LQH(HQ(R“))* S ||g||L§‘(7q,7d790(R")

with the implicit positive constant independent of g.
This thesis next show (ii). For this purpose, let 75 : L'(B) — P4(R"), with B € B,
be the natural projection such that, for any f € L'(B) and Q € Py(R™),

(2.2.11) /B 75(F) (1)Q(x) dr = /B f(#)Q(a) de.

For any ¢ € (max{1,po}, 0| and any ball B € B, the closed subspace L{(B) of L(B)
is defined by setting

LY(B):={f € LYB) : 7p(f) =0and f # 0 almost everywhere},

where L9(B) is the subspace of LI(R"™) consisting of all the measurable functions on R"
vanishing outside B. For any f € L{(B), since f # 0 almost everywhere, this thesis can
easily deduce || f| pa(rn) # 0. Therefore,

|Bls

115X

HfHqu(Rn)f
is an anisotropic (X, ¢, d)-atom. From this and Lemma 2.2.2, it follows that

B4 B
LB g

<1.
I1slx

~

H4£(R™)

(2.2.12)

Now, suppose L € (H{(R"))*. Then, by (2.2.12), this thesis finds that, for any f € L(B),

1
(2219 L < 1ol g s
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Therefore, L provides a bounded linear functional on L{(B). Thus, applying the Hahn—
Banach theorem (see, for instance, [35, Theorem 5.6]), this thesis finds that there exists
a linear functional Lp, which extends L to the whole space L1(B) without increasing its
norm.

When ¢ € (max{1,pg},o0), by the duality (L?(B))* = L7 (B), this thesis finds that
there exists an hp € LY (B) C L*(B) such that, for any f € LI(B),

(2:2.14) L) = Lo(h) = [ f@hs(a)da

In the case ¢ = oo, let ¢ € (max{1, po} oo) Then there exists an hp € L7 (B) ¢ LY(B)

such that, for any f € L§(B) C Li(B) =Jsf x) dx. Altogether, this thesis
finds that, for any ¢q € (max{l,po},oo], there ex1sts an hB 6 L7 (B) such that, for any
f € Ly(B),

(2.2.15) L(f) = /B F(@)hp (@) d

Next, this thesis proves that such an hg € LY (B) is unique in the sense of modulo
Ps(R™). Indeed, assume that hp is another element of L (B) such that

(2.2.16) L) = | Hahn(o) do

for any f € L{(B). Then, from (2.2.15), (2.2.16), and (2.2.11), this thesis infers that, for
any f € L>®(B), f —7mp(f) € L§°(B) and

f(@) = mp(N@)] [ha(@) ~ hu()] do
@) [15(@) = Fp(a)] do = [ mp(r)@)ma(hn — ho)(a) da

/,
/,

:/Bf(.r):h (x) — hB dm—/f x)TB hB—hB)( ) dx
/,

£(x) :hB(x) — hp(z) — mp(hp — hB)(x)} dz.

The arbitrariness of f further implies that hg(z) — hg(z) = m5(hg — hp)(z) for almost
every x € B. Therefore, after changing values of hp (or f/L;) on a set of measure zero,
this thesis has hp — EE; € Pqg(R™). Strictly speaking, since this thesis are dealing with
uncountably many balls B, the change of the value of hg must be done carefully. However,
since this is just a matter of passing to the limit starting from a countable family of balls.
So, we ignore this issue. Thus, for any ¢ € (max{1,po},cc] and f € L{(B), there exists a
unique hp € L7 (B)/Py(B) such that (2.2.14) holds true.

23



4.14

For any j € R” and f € L{(B;), let g; be the unique element of L% (B;)/P4(B;) such

that
= / f(x)gj(z) dx
B

Therefore, this thesis can define a local LY (R") function g by setting g(z) := gj(z) when-
ever € B;. Assume that f is a finite linear combination of anisotropic (X, ¢, d)-atoms.
It is easy to show that there exists an ¢ € R™ and a ko € Z such that supp f C o+ By,.
Let

In Ag + In[bFo~1 + p(z0)]

Inb

Then, by Definition 1.2.3, this thesis concludes that supp f C z¢ + By, C Bj,. Thus,
f € L§(Bj,) and

+ 1.

Jo =

— [t dn= [ () ds
Bj, R"
From this and (2.2.13), this thesis deduces that, for any ball B € B,

(2.2.17) By < ’B‘I/q LN (2 )=

Moreover, it is known that

9l Lamy)- = Pe%{w) lg = Pll o ()

(see, for instance, [4, p.52, (8.12)]), which, combined with Remark 2.1.7(ii) and (2.2.17),
further implies that

B

(2.2.18) Hch SRR ™ Sup > T1slx gl (L&(B))* = I (HA(R7))*-

Thus, g € Eﬁ‘g " 4(R™) and, for any finite linear combination f of anisotropic (X, ¢, d)-
atoms,

Now, this thesis shows that g € £§ q,dgo(]R") and ||g||£)A(7q/7d,90(Rn) S ||L”(H§(Rn))*.

To this end, for any m € N, {BU}, € B, and {\;}7, C (0,00), let h; € L(BY) with
7]l Loty = 1 be such that
dx]

Ja

(2.2.19) = /BOJ [g(ac) — Pgmg(x)} hj(x) dx

1
7

g9(x) — Ppg(x)
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h_j

and, for any = € R™, define

oL
B [hj(x) = Py hi(2)]Lo (@)
HlB(J)HXHh B(j)h HL‘J(B(J))

aj(x) =
Then it is easy to find that, for any j € {1,...,m}, a; is an anisotropic (X, ¢, d)-atom.
From this, and Lemma 2.2.2, it follows that ', Aja; € H4(R") and
1
m m A 6o )
(2:2.20) Snel 5|8 ] e
j=1 ‘

11pmllx
HARR) j=1 e X

Moreover, by the Minkowski inequality, the assumption that ||| La(pt)y = 1, Lemma
2.2.5, and the Holder inequality, this thesis finds that

th Pp)h H (B = < 1Pll pagony + H

1
"f Iyl da
B()

1
=1+ / |hj ()| d
|BW|a JBG)

<1+ ||thLq(B(j)) 5; L.

<14 ’B(j)

This, together with (2.2.19), the assumption that L € (H%(R"))*, and (2.2.20), further
implies that
dx}
j=1

=2 MELE | o) = Phoat@] (e da

U

g(z) — P;’mg( )

(1) q
— Z M /Bm {hj(l’) - Pgmhj(x)} 9(x)1p0 (x) de

1w llx

,Sf:)\j/_ajxg dx—Z)\La] i)\jaj
j=1

1
m m )\ ) 6o )
Soves| 5|t e
T ._ j
J=1 H)z? (R™) Jj=1 x
Using this and Definition 2.1.3, this thesis finds g € E‘;‘(’q,’dﬁo (R™). Moreover, from g €
E’;‘( oo (R™), Proposition 2.1.9, and (2.2.18), this thesis infers that

Hch;‘( HQHLA L(R™) S L] (HZ(R))*

,q’,dﬂ
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This finishes the proof of (ii) and hence Theorem 2.2.6. O

As a consequence of Theorem 2.2.6, this thesis has the following equivalence of the
anisotropic ball Campanato function space E‘;‘( a0.d, s(R™); this thesis omits the details.

Corollary 2.2.7. Let A, X, d, 0y, and py be the same as in Theorem 2.2.6 and q € [1,00)
when po € (0,1), or q € [1,p}) when py € [1,00). Then

A A
EX,1,dX,A,90 (R") = EX,q,d,HO (R™)
with equivalent quasi-norms, where dx A is the same as in (2.2.2).

Remark 2.2.8. (i) If A := 21,x,, then Theorem 2.2.6 and Corollary 2.2.7 were ob-
tained in [103, Theorem 3.14 and Corollary 3.15], respectively.

(ii) Recently, Yan et al. [99, Theorem 6.6] obtained the dual theorem of the Hardy space
Hy (X) associated with the ball quasi-Banach function space Y (X') on a given space
X of homogeneous type. This thesis point out that, since there exists no linear
structure in a general space X of homogeneous type, one can not introduce the
Schwartz function and the polynomial on X'. Indeed, any atom in [99] only has zero
degree vanishing moment, while the atom in Theorem 2.2.6 has vanishing moments
up to order d € [dx, 4,00) NN with dx 4 the same as in (2.2.2). Thus, although
(R™, p,dx) is a space of homogeneous type, Theorem 2.2.6 can not be deduced from
by [99, Theorem 6.6] and, actually, they can not cover each other.
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Chapter 3

Real-Variable Characterizations of
H4H(R™)

3.1 Littlewood—Paley Function Characterizations of H%(R")

In this section, this thesis establishes the characterizations of H )’?(R”) in terms of
the anisotropic Lusin area function, the anisotropic Littlewood—Paley g-function, or the
anisotropic Littlewood—Paley gy-function. These are the consequence of the atomic and
the finite atomic characterizations of H4 (R"™) obtained in [97] and play important roles in
establishing the Carleson measure characterization of 0)4(71, .00 (R™) in Section 4.2. First,
this thesis recall the concepts of both the anisotropic radial maximal function and the

anisotropic radial grand maximal function, which were introduced in [4].

Definition 3.1.1. Let ¢ € S(R") and f € S'(R™). The anisotropic radial mazimal
function Mg(f) of f with respect to ¢ is defined by setting, for any x € R,

M(f)(x) = sup |f ()]

Moreover, for any given N € N, the anisotropic radial grand maximal function MY (f) of
f € 8'(R") is defined by setting, for any z € R™,

MY (f)() = o )Mg(f)(w)'
pesSn (R™

In what follows, for any ¢ € S(R"™), @ is defined by setting, for any & € R",
PO = [ plaje it

where ¢ := v/—1 and z - § := Y ;" | x;& for any x = (21,...,2,),§ == (&1,..., &) € R™

~ ~

For any f € 8'(R™), f is defined by setting, for any ¢ € S(R"™), (f,¢) := (f, 9).
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Recall that f € S'(R™) is said to vanish weakly at infinity if, for any ¢ € S(R"),
f*dr — 0in 8'(R™) as k — oo (see, for instance, [36, p.50]). Let C>°(R™) denote the
collection of all the infinitely differentiable functions with compact support on R™. The
following Calder6n reproducing formula is just [7, Proposition 2.14].

Lemma 3.1.2. Let d € Zy and A be a dilation. Assume that ¢ € C°(R™) satisfies

(3.1.1) supp ¢ C By, /}R 2T o(x)dx =0 for any v € Z} with |y| < d,
and there exists a positive constant C' such that

(3.1.2) 6(6)] 2 € when ¢ € {w e R™: (2|4l < plz) <1},
Then there exists a 1 € S (R™) such that

(i) supp @ is compact and away from the origin;

(i) for any € € R™\{0}, AN
Sd((aye)o(aye) =1,
JEL

where A* denotes the adjoint matrixz of A.

Moreover, for any f € 8" (R™), if f vanishes weakly at infinity, then
F=Y fxtjxe;in S (R").
JEZ
The following definitions of the anisotropic Lusin area function, the anisotropic Littlewood—

Paley g-function, and the anisotropic Littlewood-Paley gi-function were introduced in [76,
Definition 2.6].

Definition 3.1.3. Let ¢ € S(R") be the same as in Lemma 3.1.2. For any f € S’'(R"), the
anisotropic Lusin area function S(f), the anisotropic Littlewood—Paley g-function g(f),
and the anisotropic Littlewood—Paley g3-function g3(f) with any given A € (0,00) are
defined, respectively, by setting, for any = € R™,

St

keZ, z+ By,

1
2

(3.1.3) S(f)(z) = ! If * o) dy] :

9(f)(x) == [Z\f*@(m)ﬁ] ,

kEZ
and

o A , 3
[IMP(UU—Z/)] |f* or(y)] dy} -

G @) = {Z v [

keZ R™
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This thesis characterize the space H f} (R™), respectively, in terms of the anisotropic
Lusin area function, the anisotropic Littlewood—Paley g-function, and the anisotropic
Littlewood-Paley g}-function as follows.

Theorem 3.1.4. Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 1.2.10 with p— € (0,00) and Assumption 1.2.12 with the same p_,
0o € (0,p), and py € (6o, 00), where p is the same as in (1.2.6). Then f € HY(R") if and
only if f € S'(R™), f vanishes weakly at infinity, and ||S(f)||x < oo. Moreover, for any
f e Hg (RY),

ISCOx ~ 1l zra ey
where the positive equivalence constants are independent of f.
Theorem 3.1.5. Let A and X be the same as in Theorem 3.1.4. Then f € H{(R") if
and only if f € S'(R™), f vanishes weakly at infinity, and ||g(f)||x < oo. Moreover, for
any f € H{ (R™),

lg(Hlx ~ 11f 14 @nys

where the positive equivalence constants are independent of f.

Moreover, by Theorems 3.1.4 and 3.1.5 and an argument similar to that used in the
proof of [17, Theorem 4.11], this thesis easily obtain the following result; this thesis omit
the details.

Theorem 3.1.6. Let A, X, and 6y be the same as in Theorem 3.1.4, A € (max{1,2/r;}, o),
where

(3.1.4) ry :=sup{fy € (0,00) : X satisfies Assumption 1.2.12 for this 6
and some po € (6p,0)} .

Then f € H{(R™) if and only if f € S'(R™), f vanishes weakly at infinity, and ||g5(f)||x <
00. Moreover, for any f € H{ (R™),

I (N x ~ (1 f 114 @ny»
where the positive equivalence constants are independent of f,

To prove Theorem 3.1.4, this thesis first present the following conclusion which shows
that the quasi-norm || - ||x of the anisotropic Lusin area functions defined by different ¢
as in Lemma 3.1.2 are equivalent.

Theorem 3.1.7. Let A and X be the same as in Theorem 3.1.4 and ¢, € C(R™) satisfy
both (3.1.1) and (3.1.2). Then, for any f € S'(R™) vanishing weakly at infinity,

156 (Pl x ~ 155 (H)llx

where Sy(f) is the same as in (3.1.3), Sy(f) is the same as in (3.1.3) with ¢ replaced by
1, and the positive equivalence constants are independent of f.
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To prove Theorem 3.1.7, this thesis needs the following lemma which is just [7,
Lemma?2.3] and originates from [19, Theorem 11].

Lemma 3.1.8. Let A be a dilation. Then there exists a collection
Q= {Q];C]R”: kEZ,aGIk}

of open subsets, where Ij, is certain index set, such that

(i) IR™\ U, QF| = 0 for each fized k and Q% N Q]E =0 for any o # B;
(ii) for any o, B,k, £ with £ > k, either QX N Qg =0 orQt c Q’é;
(iii) for each (¢,B) and each k < €, there exists a unique o such that Q% - Q’Oi;

(iv) there exist certain negative integer v and positive integer u such that, for any Q¥ with
both k € Z and o € Iy, there exists an zgr € QF satisfying that, for any x € QF,

LQk + Byk—u C ngg Cz+ ka-l—u-

In what follows, for convenience, this thesis call Q := {Qz}kez,ae 71, in Lemma 3.1.8
dyadic cubes and k the level, denoted by £(QF), of the dyadic cube QX with both k € Z
and a € I}.

The following technical lemma is also necessary, which is just [47, Lemma 6.9)].

Lemma 3.1.9. Let d be the same as in (2.2.1), v and u the same as in Lemma 3.1.8(iv),

and

c Inb 1
TS \mb+ @+ DA |

Then there exists a positive constant C such that, for any k,i € Z, {CQ}QEQ C [0, 00) with
Q in Lemma 3.1.8, and x € R",

b(kvi)(d+1)%

Z Q) o CQ

(@=Ti=x]  DEVD 4 pla — 2q)] D T

v

3=

<o PRIGTD M| 3T (e) o] (@)
(Q=Tt]

where £(Q) denotes the level of Q, zg € Q, and, for any k,i € Z, k Vi := max{k,i}.

This thesis now prove Theorem 3.1.7.
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Proof of Theorem 3.1.7. By symmetry, to show the present theorem, this thesis only need
to prove that, for any f € S’(R™) which vanishes weakly at infinity,

(3.1.5) 156 (Pl x S 15w (Nl x -
To this end, for any i € Z,z € R”, and y € = + B;, let
I W) = £+ oily).

Then, by Lemma 3.1.2 and the Lebesgue dominated convergence theorem, this thesis finds
that, for any i € Z,z € R", and y € = + B;,

(3.1.6) TN w) = 3 F g * by = 6:0)
keZ
- f*/(/] *gbz( _Z)
-3 / o(2)6n
- X /f*wz)qﬁkwi(y—z) -
kGZg(Q) “ Q

in &’ (R™), where all the symbols are the same as in Lemma 3.1.9. On the other hand, by
[8, Lemma 5.4], this thesis concludes that, for any k,7 € Z and z € R",

. InX_
In A_ b(le)(d+1) Inb

6% ()| < b @D

[0V + p(z)] (d+1) o +1

This further implies that, for any @) € Q with

(3.1.7) 0Q) = V_q ,

v

there exists some zg € () such that, for any k,7 € Z,x €¢ R",y € x + B;, and z € Q,

. InA_
A pkVi)(d+1) -

(3.1.8) | * iy — 2)| < b (@ DIk—il T __

[B0Vi) 4 p (2 — 2¢)] T e +1

Moreover, for any @ € Q satisfying (3.1.7), this thesis has Byy)4u C Bk From this, the
Holder inequality, and Lemma 3.1.8(iv), this thesis deduces that, for any z € @,

é)y‘/cgf*wk(y)dy' < []é’f*%(y)\z dy]é

1Bue(@)—ul Jo4Boyoyin

1
2

| * r(y)[? dy]
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< [b’f / AP dy} Loy (),

where, for any k € Z and z € R",

v (£)() = [b"“ / O dy]

Thus, for any k € Z and @ € Q satisfying (3.1.7),
1 dyl < inf YW
0] Qf*wk(y) y| s inf Yy (f)(2)-

By this, (3.1.6), (3.1.8), and Lemma 3.1.9, this thesis concludes that, for any given n €

Wﬁﬁ,l} and for any i € Z,z € R", and y € x + B;,

In A

319) [P S Db

keZ

pkVi) (d+1) o

x Q| —— nf YV (f)(2)
z(Q)=ZP€ﬂ BRI 4 p (2 — 2)] ) T +1 2@ v

< Z p—(d+ D) k=il o = (k= (kv (5 ~1)
kez

I

= Jn) ().

Using (2.2.1), this thesis are able to choose an n € (Mﬁﬁ, 00>. Therefore, from

(3.1.9), it follows that, for such an n and any =z € R",

So(H@)2 =Y b /

icZ x+B;

TN )| dy £ [ (@)

1€EZ

This, together with the Holder inequality and the choice that n > W, further

implies that, for such an n and any = € R",

SIna_ oy i 1
[S¢(f)(w)]25zz{b—<d+1>lk—zlnbb ODIE 1)}

1€Z kEL

2

M| X 0] e | @
w2 \@=TE]
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3o

1S5(H)lx < (2 {M ([ngk)(f)r> (:L‘)}3;>7

< (Z [Yﬁ(f)f) = 1Sy (H)lx »

keZ X

which further implies that (3.1.5) holds true and hence completes the proof of Theorem
3.1.7. 0

Now, this thesis recall the concept of the anisotropic weight class of Muckenhoupt,
associated with a dilation A, which was introduced in [6, Definition 2.4].

Definition 3.1.10. Let A be a dilation, p € [1,00), and w be a nonnegative measurable
function on R™. The function w is said to belong to the anisotropic weight class of
Muckenhoupt, A,(A) := A,(R", A), if there exists a positive constant C' such that, when

p € (1,00),
1 p—1
sup sup {][ w(y) dy} {][ [w(y)] T dy} <C
z€R™ k€Z z+ By, x+By,

or, when p =1,

sup sup {][ w(y) dy} ess sup [w(y)] 'y <C.
IGR" k}EZ :I?+Bk yEz—l—Bk

Moreover, the minimal constants C' as above are denoted by Cj, 4 n(w).

It is easy to prove that, if 1 < p < ¢ < oo, then A,(A) C Ay(A). Let

Asc(4) = | A (4).

q€(1,00)

For any given w € Ay (A), define the critical index q, of w by setting
(3.1.10) qu =1inf{p e [1,00): we A,(A)}.
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inclu

HXAvanish

Obviously, ¢, € [1,00). By the reverse Holder inequality (see, for instance, [50, Theorem
1.2]), this thesis concludes that, for any p € (1,00) and w € A,(A), there exists an
¢ € (0,p — 1] such that w € A,_(A). Thus, if g, € (1,00), then w ¢ Ay, (A). Moreover,
Johnson and Neugebauer [54, p.254] gave an example of w ¢ A;(A) with A = 21,5, such
that ¢, = 1.

In what follows, for any nonnegative local integrable function w and any Lebesgue
measurable set F let

For any given p € (0,00), denote by L%, (R™) the set of all the measurable functions f on
R"™ such that

£l o, (mny == {/Rn |f(z)[Pw(z) da:}p < o0.

Moreover, let LS (R™) := L*°(R™). Obviously, L}, (R") is a ball quasi-Banach function
space, which even may not be a quasi-Banach function space (see, for instance, [81, p.
86)).

To show Theorem 3.1.4, this thesis needs the following several technical lemmas.
Lemma 3.1.11 is a direct corollary of [99, Lemma 4.9] (see also [82, (4.6)]) because
(R™, p,dx) is a special space of homogeneous type; Lemma 3.1.12 is similar to [4, p.21,
Theorem 4.5] and this thesis omit the details.

Lemma 3.1.11. Let A, X, and 0y be the same as in Theorem 8.1.4. Assume that xg € R™.
Then there exists an ¢ € (0,1) such that X continuously embeds into L% (R™), where
w = [M(1zy+B,)]¢ and By is the same as in (1.2.2) with k = 0.

Lemma 3.1.12. Let A and X be the same as in Theorem 3.1.4. Then H{(R") C S'(R")
and the inclusion is continuous.

Combining Lemmas 3.1.11 and 3.1.12, this thesis obtains the following property of
H{(R™).

Lemma 3.1.13. Let A and X be the same as in Theorem 3.1.4 and f € H{(R™). Then
f vanishes weakly at infinity.

Proof. Let N € N be the same as in (2.1.1). By Lemma 3.1.12, this thesis finds that, for
any k € Z, p € S(R"), z € R", and y € x + By, |f * ¢r(z)] < Mn(f)(y). Thus, there
exists a positive constant C such that, for any k € Z, ¢ € S(R"), and = € R",

v+ By C{y e R": My(f)(y) > Cilf * pr(z)]} -

By this, Lemma 3.1.11, and [M(1,,+5,)]° is not integrable on R", this thesis concludes
that, for any k € Z, ¢ € S(R"), and = € R,

1 pr(@)] = [w(By)] 7% [w(By)]70 | f * px(a)
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< [w(By)] % [w{y € R™: My(£)(y) > Culf * pr(@)[})]%
X 1f * gr(@)|

< [w(BO] ™ My () a0 gy < B0(Bi)] % [ M (F)l]

= [w(Be)) ™ |1f1lsra gy — O

as k — 0o, which further implies that f vanishes weakly at infinity. This finishes the proof
of Lemma 3.1.13. O

To show Theorem 3.1.4, this thesis also need the following lemma whose proof is
similar to that of [69, Lemma 4.2]; this thesis omit the details here.

Lemma 3.1.14. Let A, X, 0y, and pg be the same as in Theorem 3.1.4, q € (max{pg, 1}, <],
ko € Z, and ¢ € (0,00). Assume that {\;}ien C [0,00), {B®};en C B, and {mge)}ieN C
LY(R™) satisfy that, for any € € (0,00) and i € N,

supp m'® = {x eR"™: m,ge) #* 0} c Ao Bl

i

(0)|a
(e) | B |q
m oy < ———
|| 7 HLq(R) H].B(z)HX
and )
Sl 1 -
— 00.
2 | o[ .
Then

/\1m§€)

e—0t

1 1

0o | %0 VS 00 ) %o
lim inf [Z O] <C {Z[;BU] 7
iEN X iEN 1pwllx X

()

where C is a positive constant independent of \;, B, m,;’, and €.

Now, this thesis proves Theorem 3.1.4.

Proof of Theorem 3.1.4. Let 7 be the same as in (1.2.4) and u and v the same as in
Lemma 3.1.8(iv). This thesis first show the necessity of the present theorem. To this
end, let f € H{(R™). Then, by Lemma 3.1.13, this thesis finds that f vanishes weakly
at infinity. On the other hand, it follows from [97, Theorem 4.3] that there exists a
sequence {\;};cy C [0,00) and a sequence {a; }; of anisotropic (X, ¢, d)-atoms supported,
respectively, in {B®},cn C B such that

f = Z /\iai in 8/ (Rn)

€N
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and

1
il fo) %
1L e ~ 2:[
#2612 | g s )

Let a be an (X, ¢, d)-atom supported in a dyadic cube @. Let w := u — v 4+ 27 and, for
any j S N, Uj =TQ + (BU[E(Q)—j—l}-i-QT \ Bv[((Q)—j]+2‘r)' Then, by Lemma 318(1V), this
thesis concludes that, for any = € (A¥Q)", there exists some jo € N such that z € Uj,.
For this jo, choose an N € N lager enough such that

(N—5)0j0+<;—5>u<0,

where [ := (&;\b_ +d+ 1) % > %. By this and an argument similar to that used in

the proof of [76, (3.3)], this thesis finds that, for any z € (A¥Q)P,

ve(@)
v |lal|La(q)-

S(a)(z) < pNvdop™

From this, the size condition of a, and Lemma 3.1.8(iv), this thesis deduces that, for any
z € (A"Q),
vl(

[2)) 1 1
* 1ol [Bur@)tul®

gy 1 1QF
g ||1Q”lew<@>—jom

S(a)(z) < bV0b”

< pN=B)vio+(

_ Q| ’ -1 3
Sliolls* | < |10lF MQ)@)’.
ol oz —20) olly M(1g)(x)]
Using this, this thesis obtains, for any = € R,

(3.1.11) S(f)(z) < Z [Ail S(ai)(2)1 gw g () + Z |Ail S(ai)(m)l(Ame)“(a?)
iEN ieN

S {Z [[Ai] S(ai)(2)1 4w gy (90)]90} O

By (3.1.11), Assumptions 1.2.10 and 1.2.12, and an argument similar to that used in the
proof of [97, Theorem 4.3], this thesis further conclude that

1SIx < 11l oy,

which completes the proof of the necessity of the present theorem.
Next, this thesis shows the sufficiency of the present theorem. Let ¢ and ¢ be the
same as in Lemma 3.1.2 with d in (2.2.1), f vanish weakly at infinity, and ||S(f)|x < oc.
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Then, from Theorem 3.1.7, this thesis infer that S, (f) € X. Thus, to show the sufficiency
of the present theorem, this thesis needs to prove that f € H{ (R") and

(3.1.12) 1 era @y S 118w ()l x -
To this end, for any k € Z, let Q; := {z € R" : Sy(f)(z) > 2} and

1@l
2

@

Qk::{QEQ: |QﬂQk‘> and ’QﬁQk+1|§2|}

Clearly, for any @ € Q, there exists a unique k € Z such that Q € Q. Let {QF}; be the
set of all maximal dyadic cubes in Oy, that is, there exists no Q) € Qp such that Qf ;Cé Q
for any i. Note that {Q¥}; can be divided into two cases, finite set and countable set, so
this thesis omit its index set here can discuss them one by one below.

For any Q € Q, let

(3.1.13) Q :={(y,t) e RT :=R" x (0,00) :
y € Q, prUQrutT <y bv[ﬂ(@)—l]—i—u-H'} _

Obviously, {@}Qeg are mutually disjoint and

(3.1.14) R = U UBM,

keZ i
where, for any k € Z and 4, By, ; := UQCQ?,Qer @ Then, by Lemma 3.1.8(ii) and (3.1.13),
this thesis easily find that {Bj,;}, ., ; are also mutually disjoint.

On the other hand, ¢ has the vanishing moments up to order d. From Lemma 2.2.1,
the properties of tempered distributions (see, for instance, [40, Theorem 2.3.20]), and
(3.1.14), this thesis deduces that, for any f € S'(R") vanishing weakly at infinity and
satisfying ||S(f)||x < oo and for any x € R", this thesis has

(3.1.15) F@) =" F v x dula)

kEZ

- /Rn+1 (f =) (y)pe(z — y) dy dm(t)

in §&'(R™), where m(t) denotes the counting measure on R, that is, for any set £ C R,
m(FE) is the number of integers contained in F if E has only finitely many elements, or
else m(E) := co. For any k € Z, i, and x € R", let

W@ = [ (0@ =) dydm(o)
k,i
Next, this thesis proves the sufficiency of the present theorem in three steps.

37



Step (1) The target of this step is to show that

(3.1.16) Z Z hY¥ converges in S’ (R™).

keZ 1

To this end, following the proofs of assertions (i) and (ii) in the proof of the sufficiency
of [69, Theorem 3.4(i)] with some slight modifications, this thesis concludes that, for any
given ¢ € (max{pog, 1}, 00),

(i) for any k € Z, i, and = € R",

B = Y t/ff*¢0@0¢mw—w»dymn@)
QCQr,.QeQy

holds true in L7 (R™) and hence also in &' (R™);

(ii) for any k € Z and i, h¥ = AFa¥ is a multiple of an anisotropic (X, ¢, d)-atom,
where, for any k € Z and i, \¥ ~ 2¥||15:||x with the positive equivalence constants
independent of both k£ and 7, and af is an anisotropic (X, ¢, d)-atom satisfying, for

any g € (max{po,1},0), k € Z, i, and vy € Z7,
k k
supp a; C By 1= gr + B[k -1]+u+ar

- 1
laf | aeny < g5l %" |BE|7, and . af (z)27 dz = 0.
To show (3.1.16), this thesis next consider two cases: i € N and i € {1,...,1} with
some I € N.
Case 1) ¢ € N. In this case, to prove (3.1.16), by Lemma 3.1.12, it suffices to show

that

(3.1.17) lim | > > Aaf =0.

ool remisis
<|k|<mi<i<m H{(R™)

k
Indeed, for any k € Z and i € N, by the estimate that ’Qf N Qk’ > M, this thesis finds
that, for any z € R",

QF Ny _ 1
M (1g00,) )2 Larn, () dy =4 52 >
Q7N Q Q7N ‘Qﬂ 9
This, together with Assumption 1.2.10, further implies that, for any I,m € N,
2
0| ™ 2 2|
s | S > ()| = X X 2 (1)
1<|k|<m I<i<m <7 I<|k|<m I<i<m -
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In addition, from the fact that, for any I,m € N, Zl<|k|<m > icicm AEak

1k
ko 2
< 2 [M (1ka)}
I<|k|<m I<i<m 2
X %
9y
Kk fol|
S > (21g000,)
I<|k|<m I<i<m %

Lemma 2.2.3(i), and Definition 1.2.6(i), this thesis deduces that

(3.1.19)

D

I<[k|<m I<i<m

Aea
>N

k
7

On the other hand, it follows from Definition 1.2.4 that, for any [,m € N,

1

9

> ()"

I<[k|<m

0o

X

Therefore, as [ — oo, this thesis has

sdel4| (3.1.20)

1<|kl<m

> (2a,)"

A
7 € HX (Rn)’
00y &
pY 0] %
B
< i’
~ 2 Z [HlBHX
HA(R) I<|k|<mI<i<m i ¥
1
[
3 bo|
Y S )
I<|k|<m I<i<m N
%
k fol|
S YD SNCEM
I<|k|<m I<i<m X%
_ 1 (1%
0,
3 k bo|
= Z (2 ]'Qk\Qk+1+21Qk+l>
LI<|k|<m X
- 1 (100
o | 7
k 0
S Z (2 IQk\Qk+1)
LI<|k|<m x
_ 11160
0 o
1\7° & o
+1
w(3) || @0
I<[k|<m ] x
1
0o 60 )
Kk
~ Z (2 1Qk\9k+1>
I<[k|<m ] x

This, combined with (3.1.18) and (3.1.19), further implies that, as [ — oo,

AegF
YD N

1<|k|<m I<i<m

Hg (R™)
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s4el6plus

[ ()
90 90
k k
Y ¥ (o) S X (21a)
1<|k|<m I<i<m X% 1<|k|<m <
90
0o
~ Z <2k19k\9k+1)
I<|k|<m "
1
o
< ||Sw(f) Z Lo\ — 0.
I<|k|<m "

Thus, (3.1.17) holds true and so (3.1.16) does in Case 1).
Case 2) i € {1,...,I} with some I € N. In this case, to show (3.1.16), by Lemma
3.1.12, it suffices to prove that

1
(3.1.21) Jim ) Naf =0.

I<|k|<m i=1 N
sl H (E")

Indeed, by a proof similar to that of (3.1.17), it is easy to show that (3.1.21) also holds
true. This finishes the proof of (3.1.16) in Case 2) and hence (3.1.16).
Step (2) In this step, this thesis proves that

(3.1.22) F=Y20 Xajin & (R").
keZ 1
To this end, for any z € R™, let
=SS =5 [ (vt ) dyan)

kEZ i kEZ i
in &’ (R"), where, for any k € Z and i, By, is the same as in (3.1.14). Then, to show
(3.1.22), it suffices to prove that
(3.1.23) f=finSR").

For this purpose, by the above assertion (i) and (3.1.13), this thesis finds that, for any
given k,i € Z, q € (max{pg,1},00), and z € R",

(3.1.24) :leéo/ / F )W) onz — y)
U g, @) dydm(?)
l€( Q)|<N
= lim. / [ e i, . dydm)
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holds true in L7 (R™) and also in &' (R"), where, for any N € N, v(N) := p*N*+u+1 and
n(N) := b~?W+D+utl  For the convenience of symbols, this thesis rewrite f as, for any
z € R",

Fo) =3 [ e )onte — ) dydmio)

£eN

where {R(é)}geN is an arbitrary permutation of {Bkﬂ?}keZi' For any L € N and 2 € R",
let

L
fule) = 10) -3 [ 0wt = gy dyamio).

Then, from (3.1.14), (3.1.15), and (3.1.24), it follows that, for any L € N and = € R",

~ n(N)
125 Fula)=Jim [ [ (7))~ ), o 00t) dydm(®

N—oo (N)
' n(N)
=t [ ()~ )1 e 00 dy dinfe)
— 00 ,Y(N) Rn =

N—oo

n(N)
=gim [ e~ D, o0 dydm()

holds true in &' (R™).
Note that H4 (R") is continuously embedded into &’ (R”) (Lemma 3.1.12). Thus, to
prove (3.1.23), this thesis only need to show that

—0 as L — .

(3.1.26) HfL‘ HE (R)

To do this, this thesis borrow some ideas from the proof of the atomic characterization
of H{ (R™) (see the proof of [97, Theorem 4.3]). Indeed, for any € € (0,1),L € N, and
z € R™, let

ale
@[ [ Grmmate -, molut) dyam)

where o := b2+ Then, by the Lebesgue dominated convergence theorem, this thesis
finds that, for any € € (0,1), L € N, and x € R",

o afe
@=> [ [ ()@t - p)igout) dyam(e

{=L+1

= Y @)

{=L+1
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in &’ (R™). Moreover, by some arguments similar to those used in the proofs of assertions
(i) and (ii) in the proof of the sufficiency of [69, Theorem 3.4(i)] with some slight mod-
ifications, this thesis concludes that, for any ¢ € (0,1),q € (max{po,1},00),L € N, and
¢ e NNI[L+ l,oo),hgg) is a multiple of an anisotropic (X, ¢, d)-atom, that is, there ex-
ists a sequence {\¢}renn(L+1,00) C [0,00) and a sequence {aéa)}geNm(LJrLoo) of anisotropic
(X, q,d)-atoms supported, respectively, in {B(Z)}ZGNQ(LJFLOO) C B such that, for any
¢ e NN[L+ 1,oo),héa) = )\gaég), where, for any £ € NN [L 4+ 1,00),\; and BW are
independent of . Therefore, for any ¢ € (0,1), L € N, and = € R",

{=L+1
and
e 1/6o
Al ro
3.1.28 Adpo .
| | {e:%l [HlB(Z)HX

X

On the other hand, for any given

1 Inb
N, ——1 2
e || (-1 mxc ] +2oe):

let MR,O denote the anisotropic radial grand maximal function in Definition 3.1.1 with

N replaced by Ny. Then, by the just proved conclusion that, for any ¢ € (0,1) and
L eN, {af)}geNﬂ(LHm) is a sequence of anisotropic (X, ¢, d)-atoms and [97, Lemma 4.7],
this thesis finds that, for any £ € NN [L + 1,00) and =z € R",

(381.29) MY, (af?) (@) S M, (af?) ()L (@) + L M (100) ()]

g llx

where § := (hlln)fi +d+ 1) hllnAI; > %. Moreover, since g > 1, then, from the boundedness

of M on L7 (R™) (see [75, Lemma 3.3(ii)]), this thesis deduces that, for any ¢ € (0,1),L €
N, and £ €e NN[L +1,00),

,B(Z)yl/q

Laen) ~ 1ge|x’

IR, () S )

La(R"

which, combined with Lemma 3.1.14, further implies that

(3.1.30) liminf{ i [)\ZMR[O (af)) 1ATB(L,>}60}1/00

e—0Tt T
0 1/90
|5 [
2 L Tplx i
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In addition, let £ := y(N) with N € NN [[=%] +1,00). Then, by (3.1.25), this thesis
obtains, for any = € R"”,

M3, (72) (0 = 01§, Jim 770 @

im f77) x op(a)

N—oo

= sup sup
peSN(R™) kEZ

<liminf sup sup‘ ) or(z )‘
N=00 ,eSy (R?) kEZ

—hmlnfMN (Np( ))>.

N—oo

From this, [4, p. 12, Proposition 3.10], (3.1.27), and (3.1.29), it follows that, for any L € N,

HfLH hmlnfMNO N(v(N H

HA (Rn -

IN

lim inf Z /\gMNO (aé (N))>

N—o0
(=L+1

X

lim inf Z )\gMNO ( y(N))) 145w

N—o0
{=L+1

S Marpollx y

This, together with (3.1.30), Lemma 2.1.8, Definition 1.2.4(ii), Assumption 1.2.10, and
8> %, further implies that, for any L € N,

1
H fLHHA(]R” < 1}&@{ 3 [)\EMR,O (ay(zv))) IATB(@}HO}GU

{=L+1

N

X

+ (M (Lp))

X
18

" { 3 M?[A4aanﬁ}

i Mpollx

1
TS Lo lix .
By this and (3.1.28), this thesis concludes that (3.1.26) holds true, which completes the
proof of (3.1.23) and hence (3.1.22).

Step (3) By (3.1.22), [97, Theorem 4.3], and some arguments similar to those used in
the estimations of both (3.1.18) and (3.1.20), this thesis concludes that

XB

1

Hl ka :
kcZ i B; X keZ i <
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1 1
6o % 6o | %0
$|E 5 (am)"]”, 2|2 ()]
keZ i X% keZ X
1 1
6o | %0 99
~ [Z (2k19k\9k+1) ] < ||Sw(f) [Z 1Qk\Qk+l]
keZ < keZ X
= 1SNl »
which further implies that f € H4 (R") and (3.1.12) holds true. This finishes the proof

the sufficiency and hence Theorem 3.1.4. 0

Now, this thesis establishes the anisotropic Littlewood—Paley g-function characteri-
zation of H%(R™). Recall that, for any given dilation A, ¢ € S(R"), t € (0,00), and
j € Z and for any f € &' (R™), the anisotropic Peetre mazimal function (07 f)e is defined
by setting, for any x € R",

(¢ * [)(z + )|
[14bp(y)]*

and the g-function associated with (cb;ff)t is defined by setting, for any x € R",

(qﬁ;ff)t(a:) :=ess sup
yeR”

1/2
= [0, @)]

JEZ

g (f)(2) :

To prove Theorem 3.1.5, this thesis needs the following estimate which is just [73, Lemma
3.6] originated from [93, (2.66)].

Lemma 3.1.15. Let ¢ be a radial function the same as in Lemma 3.1.2. Then, for any
given No € N and v € (0,00), there exists a positive constant C(yy, ), depending only on
No and 7, such that, for any t € (0, Ny), l € Z, f € S'(R"), and x € R",

|— sy * [ ()| J
n [L+0p(z —y)

610, @ < Oy Y000 [

k=0 R

This thesis now prove Theorem 3.1.5.

Proof of Theorem 3.1.5. First, let f € Hi (R™). Then, by Lemma 3.1.13, this thesis finds
that f vanishes weakly at infinity. In addition, repeating the proof of the necessity of
Theorem 3.1.4 with some slight modifications, this thesis easily find that g(f) € X and
la(Hllx S HfHH),?(Rn). Thus, to prove the present theorem, by Theorem 3.1.4, this thesis
only need to show that, for any f € S’'(R") satisfying that f vanishes weakly at infinity

and g(f) € X,
(3.1.31) I1S(HIx < Ng(Hlix
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holds true. Notice that, for any f € S’(R™) vanishing weakly at infinity, any ¢ € (0, 00),
and almost every z € R", S(f)(z) S g¢,+(f)(x). Thus, to show (3.1.31), it suffices to prove
that, for any f € §’'(R"™) vanishing weakly at infinity,

(3.1.32) 964Dl x S Nlg(Hllx

holds true for some ¢t € (1/ry,00) with 74 the same as in (3.1.4). Now, this thesis
shows (3.1.32). To this end, assume that ¢ € S(R") is a radial function the same as
in Lemma 3.1.2. Obviously, ¢ € (1/ry,00) implies that there exists a 6y € (0,74) such
that t € (1/60p,00). Fix an Ny € (1/6p,00). By this, Lemma 3.1.15, and the Minkowski
inequality, this thesis finds that, for any = € R™,

mﬂﬁMZ{EIWU%@F}

kEZ

N[

< Z ijNom_ijrk/ [(D— (i) * [ W)™ dy

k _ t
kez | jery we [+ (e =yl

Z p—i(Nor+—1)

JELy

IN

» 1
+ Y ry

[ZbT {/n 1+(;k(*f)g})t|,.r: dy}”] 2 ’

keZ

which further implies that

lous (£35S || 3 proors =
JELy

X7+
< 3 b ors =1t {Z bre
= kEZ
X / + Z b_it”/
{yeRmp(—y)<b=k} {yeRm: bi=k—1<p(-—y)<bi=k}
PR
ry "t
X [ (o—(rry * f) ()] dy]
X7F
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<Zb]N0r+ 1)6

JELy

X [/{yERn:P('—ykb—k} |[(S-G+wy = F) W] dy]

Z b'r+ {Z pitr+
kEZ €N

T
2\ 2
T

1
X

Then, from the Minkowski inequality again and Assumption 1.2.10, this thesis further
infer that

lons (P S 3 psors=1

o> bt {Z %

JGZ+ ieN keZ
2y P
’ [/ [ (&—wy * £) @)™ dy] "
{yGRn: p(._y)<b7k} _(]"l‘k) N
X7
< Z p—I (Nor+—1)bo
j€Zy
EaR
. L
Zb(l—tm-)l {Z (M (‘¢—(j+k) % f‘ NE }
€N kel Xﬁ
S Z b_j(NoT+—1)00 Z b(l—tr+)i00
J€Lt i€N
r+ 160
2] 2
{Z (D my * f] 7] } 1
< X+
~ lg(NI5".

This further implies that (3.1.32) holds true and hence finishes the proof of Theorem
3.1.5. O

Remark 3.1.16. (i) If A :=21,,, then Theorems 3.1.4, 3.1.5, and 3.1.6 were obtained
in [17, Theorems 4.9, 4.11, and 4.13] (see also [81, Theorem 3.21] and [95, Theorem
2.10]).

(ii) As was mentioned in Remark 2.2.8(ii), although (R™, p, dx) is a space of homogeneous
type, Theorems 3.1.4, 3.1.5, and 3.1.6 can not be deduced from [98, Theorems 4.11,
5.1, and 5.3] and, actually, they can not cover each other.
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<
(3.2.1) ;kauquo S

3.2 Fourier Transforms of H{(R")

In this section, this thesis aim to study the Fourier transform of f. Recall that, for
any ¢ € S(R™), its Fourier transform, denoted by % (¢) or @, is defined by setting, for
any £ € R,

F@O =0 = [ ),

here and thereafter, » := /—1 and, for any z = (21,...,2,),& = (&1,...,&) € R™,
z-& = >0 x;&. For any f € S'(R"), f is defined by setting, for any ¢ € S(R™),
<f, ) == (f,@); also, for any f € S(R") [resp. S'(R™)], f¥ denotes its inverse Fourier
transform which is defined by setting, for any ¢ € R", fV(£) := ]?(—5) [resp. for any
e € S(R™), (f¥,0) == (f,¢")].

Now, this thesis present the main result of this section as follows.

Theorem 3.2.1. Let A be a dilation and X a ball quasi-Banach function space satisfying
both Assumption 1.2.10 with p— € (0,00) and Assumption 1.2.12 with the same p_,
0o € (0,p), and po € (0o, 00), where p is the same as in (1.2.6). Further assume that there
exists qo € [0o, 1] such that:

(i) for any non-negative measurable functions { fr}3,

> I

k=1

)

X %0
where the implicit positive constant is independent of { fi}7,;

(ii) for any B € B with B in (1.2.3),

1 1
(3.2.2) Islx 2 min {|Blw,[B]% }

where the implicit positive constant is independent of B.

Then, for any f € H)’?(R"), there exists a continuous function F' on R™ such that
(3.2.3) f=F in SR

and there exists a positive constant C, depending only on A and X, such that, for any
r € R™,
1

(324 ()] < Ol g ey max {[pu(@)]o " pu(a] '},

here and thereafter, p, is defined as in Definition 1.2.3 with A replaced by its transposed

matriz AT,
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Remark 3.2.2. (i) If A:= 21,4y, then Theorem 3.2.1 was obtained in [46, Theorem

(i)

(iii)

2.1].

For any given measurable set £ C R™ and any given p € (0,00), the Lebesgue space
LP(FE) is defined by setting,

1/
(3.2.5) LP(E) = {f is measurable on E: ||f[|1ro(p) = [/ |f(z)|P da:] ’ < oo} .
E

Let A be a dilation, p € (0,1), and

wenol |- ] )

Then, by [99, Remarks 2.7(i) and 4.21(i)], this thesis concludes that LP(R™) satisfies
all assumptions of Definition 2.1.1 with X := LP(R"™), p_ € (0,p], 6p € (0,p—), and
po € (p,00). Moreover, choose qo € (p,1]. Then it follows from (3.2.5) that, for any
non-negative measurable functions {f;}7°, and any B € B,

> I
k=1

Skl g <
k=1

P
L7 (R")
and
1 ) N
118l ey = |BI7 > min {|Bl, | B }.
Thus, LP(R™) satisfies all the assumptions of Theorem 3.2.1 with X := LP(R"). In

this case, Theorem 3.2.1 was obtained in [9, Theorem 1].

As mentioned in [46, Remark 2.1(ii)], (3.2.4) implies that the function f € H4(R")N
L'(R™) has a vanishing moment. This illustrates the necessity of the vanishing
moment of atoms in some sense.

To prove Theorem 3.2.1, this thesis needs more preparations. Let A be a dilation.

Recall that the dilation operator D4 is defined by setting, for any f € .Z(R"),

Da(f)() = f(A).

Then, by an elementary calculation (see also [9, (3.1)]), this thesis finds that, for any
ke€Z, fe LYR"), and x € R",

(3.2.6) Jla) = v* (Dhe (7 (P4S))) (@).

first

Next, this thesis recall the definition of anisotropic atomic Hardy spaces which were
introduced in [97, Definition 4.2].
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Definition 3.2.3. Let A, X, 6y, and pg be the same as in Definition 2.1.1. Further assume
that ¢ € (max{po, 1}, oc] and

(3.2.7) de H(;O - 1> mlab)J ,oo> NZs.

The anisotropic atomic Hardy space Hﬁ’q’d (R™) is defined to be the set of all f € S'(R"™)

,atom

satisfying that there exist a sequence {\;}jen C C and a sequence {a;};jen of (X,q,d)-

atoms supported, respectively, in {B7 }jen C B such that

F="Xa,

jeN

in &'(R™) and that

1
90
Z[P‘leJ}QO 0 < 00
o Lsllx

X

Moreover, for any f € H}?’q’d (R™), let

,atom

1
s
\j11p; ro ’
1155 x ’

I/l se, @) 3= inf ) [
jeN
X

where the infimum is taken over all decompositions of f as above.

The following atomic characterization of H% (R™), which was established in [97, The-
orem 4.3], is needed in the proof of Theorem 3.2.1.

Lemma 3.2.4. Let A, X, q, and d be the same as in Definition 3.2.3. Then HQ(R") =
A,q,d
H

Xatom (R™) with equivalent quasi-norms.

By an argument similar to that used in proof of [9, Lemma 4], this thesis immediately
obtain the following conclusion.

Lemma 3.2.5. Let A, X, q, and d be the same as in Definition 3.2.53. Assume that a is
an anisotropic (X, q,d)-atom supported in xo + By, with some zo € R™ and iy € Z. Then
there exists a positive constant C' such that, for any o € Z with || < d and for any
z e R,

B e ) T Y R !

where C' is also independent of a.
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Proof. Without loss of generality, this thesis may assume that a is supported in Bj,.
Thus, supp (D0a) C By. On the one hand, by [31, (1.20)], Definition 3.2.3(i),, the Taylor
remainder theorem, the Holder inequality, and Definition 3.2.3(i),, this thesis concludes
that, for any o € Z" with |a| < d and for any z € R",

(3.29) |o° (9* (Dj};a)) (;U)‘ -

/ —omig)e (nga) (€)e~2mat d&’

(
Bo

/BO(—27rz§)a (Di‘;a> (6) [€*2mx-£ — T(g)} dg‘
S [ 1€l (At ol ag
By

S laft e [ jae) e < laft o 1,

0

X Y
where T(€) is the (d — |a|)th-order Taylor polynomial of the function & — e~2™®¢ at

the origin. On the other hand, from [31, (1.20)], the Holder inequality, and Definition
3.2.3(i),, this thesis deduces that, for any « € Z!} with |a| < d and for any z € R",

o (7 (03] 0] -
< /B €l a (a¢) [ dg S0 [ ()] de

)

/B (—2me) (Diga) (gye2m df‘

-1

)

= HlB"O b's

which, combined with (3.2.9), further implies (3.2.8) and hence completes the proof of
Lemma 3.2.5. ]

Applying Lemma 3.2.5, this thesis obtains the following uniform estimate on anisotropic
(X, q,d)-atoms, which plays a key role in the proof of Theorem 3.2.1.

c3s212| Lemma 3.2.6. Let A, X, q, d, and 0y be the same as in Definition 3.2.53. Further assume
that X satisfies (3.2.2) with qo € [0y, 1]. Then there exists a positive constant C' such that,
for any anisotropic (X, q,d)-atom a and for any x € R",

~ i_l L_l
c3s2e2] (3.2.10) la(z)] < Cmax{[p*(x)]qo , [pe(z)]% } ,
where py is the same as in Theorem 3.2.1.

The proof of Lemma 3.2.6 needs the following inequalities which are just [4, p. 11,
Lemma 3.2].
Lemma 3.2.7. Let A be a dilation. Then there exists a positive constant C' such that, for
any r € R",
1
5[/}(%)]1““*)/1“1’ < |a| < Clp(@)]" 1 when p(x) € (1,00)
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and
1
SIp@POD R <[] < Clp@)]"OV " when p(z) € [0,1],

Now, this thesis give the proof of Lemma 3.2.6.

Proof of Lemma 3.2.6. Let a be an anisotropic (X, g, d)-atom supported in z¢ + B;, with

some zg € R™ and i¢9 € Z. Without loss of generality, this thesis may assume ¢y = 0. By
n times

——
(3.2.6), Lemma 3.2.5 with a = (0,...,0), and (3.2.2), this thesis concludes that, for any
r € R,

bio.F (fofa) ((A*)Poz) ‘

i (05 ( (050))) 0] -

-1 ,
g, HX min {1, ‘(A*)Zox’dﬂ}

(3.2.11) a(a)| =

< pio

< b max {b;g, b;(t))} min {1, ‘(A*)iox‘dﬂ} .

Next, this thesis proves (3.2.10) by considering the following two cases on py(x).
Case 1) p.«(x) < b~%. In this case, note that

(3.2.12) px ((A*)02) = biop,(z) < 1.
Moreover, by (2.2.1), this thesis finds that

1 In(A\_) 1 In(A\_)
1—- = 1 >1—-— 1
q0+(d+ ) Inb — 60+(d+ ) Inb

From this, (3.2.11), (3.2.12), and Lemma 3.2.7, this thesis infers that, for any z € R”
satisfying p.(z) < b7,

> 0.

dr1)n2s)

(3.2.13)  |a(x)| < b max {b_‘ig, b_ég} [+ ((A*)ioaz)](

e {bio[l—qlo-‘r(d—i—l)lnl(,j;)]? bz‘o[l—gl()+(d+1)1“f3;>}} [p*($)](d+1)1“f:;)

1 _q 19
= mas {[p.(@)] 0", [pu(@)] 70}
This shows (3.2.10) in Case 1).

Case 2) ps(z) > b~%. In this case, note that p,((A*)x) = bp,(x) > 1. Using this,
(3.2.11), Lemma 3.2.7, and the fact that % —-1> q% — 1 > 0, this thesis concludes that,
for any x € R™ satisfying p.(x) > b=,

la(x)| < b max {b;g, bz’g} = max {biio(%fl), biio(%fl)}
11 1 _q
< max {5 (@)},
which, combined with (3.2.13), then completes the proof of (3.2.10) and hence Lemma
3.2.6. O
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The following conclusion is also used in the proof of Theorem 3.2.1.

Lemma 3.2.8. Let A, X, and 0y be the same as in Definition 3.2.3. Further assume that
X satisfies (3.2.1) with qo € [0, 1]. Then there exists a positive constant C' such that, for
any {\iYieny C C and {BW};en C B,

1

doInl<c {Z [W]QO}GO

2 Z g0 lx

Proof. Indeed, by Lemma 2.1.8, Definition 1.2.6, (3.2.1), and Definition 1.2.4(ii), this
thesis finds that, for any {)\;}ieny C C and {B®W},cy C B,

<>{ oy

=1
_ || il L0 [P\ il1pa) ]qo
— || 1o ll% Iy pollx] |, &

1 1
- P\ 150 ] B i [ [Ail150) ]90 "
Z 1 \1B<wHX = Lo llx
X X

This finishes the proof of Lemma 3.2.8. O

|Ai| 150
HlB(i)HX

qO

1

Next, this thesis shows Theorem 3.2.1.

Proof of Theorem 3.2.1. Let ¢ and d be the same as in Definition 3.2.3. Without loss
of generality, this thesis may assume that ||f|| HAo®n) > 0. Then, by Lemma 3.2.4 and
Definition 3.2.3(ii), this thesis finds that there exist a sequence {/\‘}zeN C C and a sequence
{a;}ien of anisotropic (X, ¢, d)-atoms supported, respectively, in {B®},cny C B such that

(3.2.14) f =2 Xiai in §'R")
€N
and
1/90
iltpo 1"
(3.2.15) 17l ey ~ Z [111 o llx
ieN B X

First, this thesis try to find the desired function F. Note that a function g € L'(R")
implies that g is well defined in R™ (see, for instance, [31, (1.11)]), so does a; for any 7 € N.
Moreover, from Lemmas 3.2.6 and 3.2.8 and from (3.2.15), it follows that, for any x € R",

(3.2.16) > illas@) <> I ymax{ pu(@)] w0 pu(a )]Lfl}

€N €N
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S Uz ey mex { o ()]0 [pu (@)

Therefore, the function

(3.2.17) F() =Y Nai()

€N

is well defined pointwisely on R™ and, for any = € R™,

F@)] S 111118 oy ma { [ou ()] 70" [pu)] 01

which completes the proof of (3.2.4).

Second, this thesis shows the continuity of F' on R™. If this thesis can prove that F is
continuous on any compact subset of R”, then the continuity of F on R" is obvious. Let
E C R™ be any given compact set. Then there exists a positive constant K, depending
only on A and E, such that p.(z) < K holds for any = € E. By this and (3.2.16), this
thesis concludes that, for any x € F,

1 S
> Inllai(@)] S max { K K f] g oy < o
€N

Thus, the summation ),y Aia;(-) converges uniformly on E. This, together with the fact
that a; is continuous for any 7 € N, further implies that F' is also continuous on E and
hence on R".

Finally, this thesis shows (3.2.3). By (3.2.14) and the continuity of the Fourier trans-
form in S’(R™) (see, for instance, [31, Theorem 1.17]), this thesis obtains f= D ien Nidi
in §&'(R™). Thus, to prove (3.2.3), this thesis only need to show that

(3.2.18) F =Y \ain &'(R").
€N

Indeed, from Lemma 3.2.6 and the definition of Schwartz functions [see (1.2.7)], this thesis
deduces that, for any i € N and ¢ € S(R"),

~ |

(@i, p)| =

< z /
+ ||<PHL1 R")

— _k - -
<Zbk“b Bl < 307 + e,
k=1

1

max {[p ()]0 ", [pu(@)) " } ()| do

* kJFlB*\(A* kB*
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where By is the unit dilated ball with respect to A*. This further implies that there exists
a positive constant C such that |(a;, ¢)| < C holds uniformly for any ¢ € N. Combining
this and (3.2.15), this thesis obtains

o0 oo
fm >0 Nll(@ o) S fim 3 ] =0.
i=I+1 i=I+1

Therefore, for any ¢ € S(R"),

This finishes the proof of (3.2.18) and hence Theorem 3.2.1. O

3.3 Hardy-Littlewood Inequalities on H#(R")

In this section, as applications of Theorem 3.2.1, this thesis first prove that the func-
tion F' given in Theorem 3.2.1 has a higher order convergence at the origin (see Theo-
rem 3.3.1). Then this thesis extends the Hardy—Littlewood inequality to the setting of
anisotropic Hardy spaces associated with ball quasi-Banach function spaces (see Theorem
3.3.2).

Theorem 3.3.1. Let A, X, qo, and ps be the same as in Theorem 3.2.1. Then, for any
f € H{(R™), there exists a continuous function F on R"™ such that f = F in S'(R™) and

(3.3.1) lim ——5—
[#1=0% [, ()] 70

Proof. Let f € H¢(R") and g and d be the same as in Definition 3.2.3. Then, by Lemma
3.2.4 and Definition 3.2.3(ii), this thesis finds that there exist a sequence {\;};eny C C and
a sequence {a; };en of anisotropic (X, ¢, d)-atoms supported, respectively, in {B®};cy C B
such that f =3,y Aia; in &'(R™) and

Mpollx

1
00 ) 9
Aillpo |7
332 I1lrga ~ {}_ |
€N x
Moreover, from the proof of Theorem 3.2.1, it follows that, for any = € R™,

(3.3.3) Fz) =Y Nai(z)

1€EN

is continuous and satisfies that f = F in §'(R™). Thus, to show the present theorem,
this thesis only need to prove that (3.3.1) holds for F in (3.3.3). On the one hand, by an

o4



argument similar to that used in the proof of (3.2.13), this thesis concludes that, for any
anisotropic (X, ¢, d)-atom a supported in zg + By, with some zo € R™ and ko € Z and for
any x € R" satisfying p,(z) < b0,

1 ln()\
’a(l.)’ S max {b 0[1—*+(d+1)

In(A_) In(A_)

)} bko[l—%“r(d'i‘l) Inb }[p*(x)](d—‘rl) Inb

which, together with (2.2.1) and Lemma 3.2.7, further implies that (d + 1)1n1(1;\b_) > % -1
and

o 13@)]
(3.34) lim ———
PO [pu(@)] %0

On the other hand, from (3.3.3), Lemmas 3.2.6, 3.2.7, and 3.2.8, and (3.3.2), this thesis
deduces that, for any = € R" satisfying |z| < 1,

=0.

(3.3.5) 7_1 <3l 7_1 SN S Il gy < oo

[P*( )} ieN p ( )] % ieN
Using this, the dominated convergence theorem, and (3.3.4), this thesis finds that
F(z)

=0T o ()]0

which completes the proof of Theorem 3.3.1. O

As the other application of Theorem 3.2.1, this thesis extends the Hardy—Littlewood
inequality to the setting of anisotropic Hardy spaces associated with ball quasi-Banach
function spaces as follows.

Theorem 3.3.2. Let A, X, 0y, and qo be the same as in Theorem 3.2.1. Then, for any
f € H{(R™), there exists a continuous function F on R™ such that f = F in S'(R") and

1

. —d 4 _ a0
330) | [ 1F@mmin (@ B @) o] <l
where C' is a positive constant depending only on A and X .

Proof. Let py and d be the same as in Definition 3.2.3, ¢ € (max{pg,2},o0], and f €
H{(R™). Then, by Lemma 3.2.4 and Definition 3.2.3, this thesis finds that there exist a
sequence {\;}ien C C and a sequence {a;};en of (X, q,d)-atoms supported, respectively,
in {BW},en C B such that f =Y,y Nia; in S'(R™) and

Mg 1%
2|4 B (i)
€N x
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By Theorem 3.2.1, this thesis finds that, to prove the present theorem, it suffices to show
that (3.3.6) holds for F' in (3.2.17). For this purpose, this thesis first prove that there
exists a positive constant M such that, for any (X, g, d)-atom a, it holds that

1

(338) ([ [a@imin {175 o 5] ae) ™ <

Without loss of generality, this thesis may assume that a is supported in zg + B;, with
some zg € R"™ and iy € Z. Then it is easy to conclude that

339) | [ [ min {fp.ol 5 S @) S )] ol

: {/( S (@) min { [pu (@)~ [pua)] a0 }]" dx}qo

1

a0
((4%)io+ 1550

= Il + 127

where B is the unit dilated ball with respect to A*. Let 6 be a fixed positive constant
such that
1 In(A_) 1 In(A_)
1——+(d+1 —-0>1——+4+(d+1
o "D m g AT D

Using this and (3.2.13), this thesis finds that

) InA_ ig _ig
(3.3.10) 1, < poltHe) R max{b—eii, b }

InA_
% / [min{[p*(x)]l—elo—qlo'f'(d-i-l) nb ,
( *)7i0+136¢

1

In)_ q0 an
[p*<x>]1—q%+<d+1>m}] dx}‘m

< pioll+(d+1) 55 ax {b_;?), b—f]g}

—0>0.

1= L InA_ —anl1— L InA_
Xnﬂn{b foll =g+ 1) T —0)p—ioll— b+ (@) ﬂ}

1

a0
X { / @)t dm}
( *)—ZO—Q—IBS

a0 1
. . . b—1 a0
__ 100 —io+k —i0+k)(0go—1 _
— pio § : b0tk (p — 1)p(iotk)(0a0—1) = <1_b—9qo) .
kEZ\N
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For Iy, by the Holder inequality, the Plancherel theorem (see [31, Theorem 1.18]), qo €
[60, 1], Definition 3.2.3(i),, and (3.2.2), this thesis obtains

1
2
I < / a(x)|? da
(4%) 01 By
1—-L L 1—2 2—qq 2%0
< min {7 o) ||
((4%) 01 B3)8

2q,
< —io+hk o S (Cio k) (A=5E—50)  (—io k) (1= ) o |
< llallz2gny § > b (b—1) |min{ b o’ b a0
keN

: ; ST -y
< llall z2 () {b”o [min{b_lo( “5 ) b‘“’(l—qo)H }
< max {bio(é_pl)a bio(%ql)} min {b_io(é_l’l), bio(éqlo)} =1,

which, together with (3.3.9) and (3.3.10), further implies (3.3.8).

Next, this thesis proves (3.3.6). From Lemma 2.1.8, Definition 1.2.6, (3.2.1), Defini-
tion 1.2.4(ii), an argument similar to that used in the proof of Lemma 3.2.8, and (3.3.7),
this thesis deduces that

1
o q0

(Z\M‘”) S rp ey
=1

By this, (3.2.17), qo € [0o, 1], Lemma 2.1.8, the Fatou lemma, and (3.3.8), this thesis
concludes that

1

[/n |F'(x)]% min{[p*( )%~ 0 L [p*(:c)]qo—Q} dx] 1

{ZM @ / (16 min {[pu ()]~ 70, [pua)] a0 }]" d}

€N
1

a0
<M (Z wqo) < lrageny-

€N
This finishes the proof of Theorem 3.3.2. O

Remark 3.3.3. (i) If A := 21,,xp, then Theorems 3.3.1 and 3.3.2 were obtained, re-
spectively, in [46, Theorems 2.2 and 2.3].

(ii) Let A be a dilation and p € (0,1). Then, by Remark 3.2.2(ii), this thesis finds that
LP(R™) satisfies all assumptions of Theorems 3.3.1 and 3.3.2 with X := LP(R"). In
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this case, Theorems 3.3.1 and 3.3.2 were obtained, respectively, in [9, Corollaries 6
and 8.

o8



Chapter 4

Real-Variable Characterizations of

A
£X7q7d790 (Rn)

4.1 Equivalent Characterizations of Eél(,l]dﬂo (R™)

In this section, applying the dual theorem obtained in Section 2, this thesis estab-
lishes several equivalent characterizations for the anisotropic ball Campanato function
space E‘;‘(’ 0.d.00 (R™). This plays an important role in establishing the Carleson measure
characterization of /vé;, 4.0,(R") in Section 4.2 below.

Theorem 4.1.1. Let A, X, q, d, and 6y be the same as in Corollary 2.2.7 and

Inb [2 In(Ay)
2.19.y2| (4.1.1 —+d
252 (411) < (o0 L2 ] )
for some s € (0,00). Then the following statements are mutually equivalent:

(i) fe Eﬁ’q’dﬂo(R”);

(ii) fe L (R™) and

loc

1 =1
m )\ o %
2.19.y1] (4.1.2 . = — 2t | 1,
219v1] @22 W legg ey = ;<u1m+&.nx> o
1= k3
X
- )\j’xj+Blj’

2Ly, I

In(A_)

bale’f(x) — PzderBl,f(x)‘
<.

dx

n plsll+emnd] | [p(x — :vj)]1+€lnl<jb_>
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< 00,

where the supremum is taken over allm € N, {z;+ By }]L; C B, with both {x;}].
R™ and {l;}7y C Z, and {\;}7; C (0, 00).

Moreover, for any f € L (R"),

1Fllca

&y ~ [1fll pae

X,q,d,0( X1d0( )

with the positive equivalence constants independent of f.

To show Theorem 4.1.1, this thesis needs the following technical lemma, which is a
direct inference of the pointwise estimate 1, B4t < bg/\/l(lgjj.Jr Bkj), for any ¢ € Z,,
sequence {z;}jen C R™, and sequence {k;}jeny C Z; this thesis omits the details here.

Lemma 4.1.2. Let X be a ball quasi-Banach function space satisfying Assumption 1.2.10
withp_ € (0,00), £ € Z4, and s € (0,min{p_,1}). Then there exists a positive constant C,
independent of both € and s, such that, for any sequence {x;}jen C R™ and any sequence
{kj}jen C Z,

¢
Z 1Ij+Bk]-+e < Cbs Z 1zj+Bkj ,
jEN X JjEN x
where, for any j € N, By, is the same as in (1.2.2).
Now, this thesis shows Theorem 4.1.1.

Proof of Theorem 4.1.1. According to Corollary 2.2.7, to prove the present theorem, this

thesis only need to show that, for any f € L (R"),
(413) 170,y ~ I, oy

This thesis first prove

(4.1.4) 1f1l ca

<
X,1,d,0¢p (R ||f||£j>4(£1d9 (Rn)

Indeed, by Definition 1.2.3, this thesis finds that, for any m € N, {x; + B, }7",; C B with
both {z;}"; C R"™ and {l;}]L; C Z, {\;}}; C (0,00), € € (0,00), and j 6{1 2,...,m},
In(A_)

/ bsljﬁ’f(x)*P;:lj—i-Bzvf(x)’
R

dzx

n(A_) n(A_)
n blj[1+€%] 4 [ (x — T )]1+61 I:b

>/ EJ lnb ‘f( ) :1:+Bl f( )‘ d
— n ':U
zj+By; bl [1‘*'51 1(:\5 )] + [ ( — :L'j)]H' : l(:b)
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e dx
blj [1“1‘8 lnb

LR | f(z) - x+B, f(@)]
N/JEJ—FBZ

_ ]{HBL (f(m) — P§j+B,jf<g:)‘ dz.

which, together with Definition 2.1.3 and (4.1.2), further implies (4.1.4).
Conversely, Define

This thesis has

NZH
a:]

In(A_ )
E b~ k[l4e b /
Tj+Br k41

[(@) = P2y, f(@)] do.

x]“l‘Bl HX

In(A_ )
>ty /
acj+sz+k

o F(@) = Pl op,  J(@)] do
L

keN
"3 iy SV
Moo T 2

x / o NP @)~ P )]

Zj j
From Definitions 1.2.3 and 2.1.3, this thesis deduces that, for any m € N, {z;+ By, }].; C B
with both {z;}", C R" and {l;}7*, C Z, {)\ }ity € (0,00),

Ui )\‘|£Ej+Bl’ b! ] lnb ’f( ) ggl+Bl f(x)‘

— a3, x Jre glsl+e2052 + oz — )]+ em2)

Ajlz; + By, | -
z D |
Z'j+Bl» k=0 $j+sz+k+1\$j+Blj+k

HlxﬁBl Ix
bl e If( ) — I+Bl f(z)]
X In(A_ In(A_) de'
blj[lJrs lnb ]+[ (JU—QS )]1+ o

m
g |1IJ+BL HX /x]—&-Bl

dx

(4.1.6)

f@) =Pl p, f(@)] da

o0

m In(X
Z 3 bkl ]
= \1ch+Bz Ix &
d
<[ o @ P )]
l+k+1

1

m 6o 9y
Z ) ]‘xi‘i‘Bli HfHEXl 4,00 &™) +1

i=1 ”]-Z'—L-"-Bl HX
X
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Note that, on the one hand, by the definition of minimizing polynomials, (1.2.5), [53,
Lemma 2.19], and Lemma 2.2.5, this thesis finds that, for any k € Nand = € z; + Bij+k+1,

@17)

Pd—l—Bl +kf( T) — Pd—i—Bl f(x)’
k

IN

Pd+Bl @) - Pd—i—Bl - 1f(x)‘

N
I
—_

I
] =

d d
ij"'—BljJerl (f - P$j+Blj+yf> (x))

N
Il
—

] =

P ( _pd ) H ,
T +Blj+1/71 f T +Blj+uf I,00 (B($j7>\2+k))
Li+k \ @
AT ‘
! )\lj+v71
“E:
|333

on the other hand, from Definition 1.2.4(ii), the fact that s € (0,6p), and Lemma 4.1.2,
this thesis infers that, for any j € {1,2,...,m},

N
Il
R

d d
sz+Blj+u71 (f - P$j+sz+uf> H

A
Mw

l v—
Lo (Bz; A7)

v

o ‘d;
+&+vﬂ2ﬁ&WV@> S W) dy

1

[2.15.33] (4.18) T —

My x ™ T ol

kol

and, for any k € N,

1

m 60 0o
2.19.x2 4.1.9 1,
[2.19.22] (219 §:<nuﬁ&+mx> B

=1
X
1

0o )
< Z 1s,48,
(\1mz+Bz HX> e

X
1

m s 0o )
< |3 () Lon,

[

b'e
Combining (4.1.5), (4.1.7), (4.1.8), (4.1.9), and Lemma 4.1.2, this thesis concludes that

-1

m o 6o
lti x I
EZ(WIﬁ&HX> ot

=1
X
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[s3t2]

1 —1

In(A) m A\ 0o 90
<Zb k[1-24e—75 Z(Hl ’ ) 1131-+Bzi+k
T

kEN i=1 +Bi,+k Ix
X
fla) - P2 5 f(x)] dz
Z 1 zj+By, +k”X /I]+Bl ik zj+Bi 4k
1 -1
)\d k k , m )\ 6o =
+ +b bV(Efl) A 1 B
%( ) "Z::l zz; leﬁBzﬁu”X TPl .
J d
2T . e fly) — Py, f ‘ d
j; Hlxj"—Bljh/HX ~/:z:j+Blj+u ) @i+ Bij 4o ()| dy
ln()\ ) )\d kg
S lcs, o @ S bTHITEH +Z< ”’) 3 e
keN keN \ 7 =
_k[1-24 1n<k> A
e | 02215 () o
keN keN \7—
S Wlleg g { 050 4 Skt |
X,1,d,6q Pyt =
_R[24 Q) ()
~ |’f|‘£§<,1,d,eo(R")Zb e Inb ]7
keN

which, together with (4.1.6), (4.1.2), (4.1.1), and the arbitrariness of m € N, {z; +
By}, C B with both {z;}7; C R" and {[;}]; C Z, and {\;}7; C (0,00), further
implies that

In(A_) In(A4)
S pk d

HfHLAE (]Rn < HfHﬁdee (R™) b~ [ e Inb ]
keN

~ 1 fllca

X,1,d,0¢ (R™)

This, combined with (4.1.4), proves (4.1.3) and hence finishes the proof of Theorem 4.1.1.
O

This thesis can obtain one more equivalent characterization of E}% a.d,00 (R™) as follows,
whose proof is a slight modification of Theorem 4.1.1; this thesis omits the details.

Theorem 4.1.3. If A, X, q, d, 0y, and € are the same as in Theorem 4.1.1, then the
conclusion of Theorem 4.1.1 with m replaced by oo still holds true, where the supremum
therein is taken over all {x; + By, }jen C B with both {x;}jen C R™ and {l;}jen C Z and

63



{Aj}jen C (0,00) satisfying

1

)\ (2 0o
> (J) Lo, 4B, € (0,00).
X

2 \Theym, lIx

Remark 4.1.4. If A := 21,,, then Theorems 4.1.1 and 4.1.3 were obtained in [103,
Theorems 4.1 and 4.4], respectively.

4.2 Carleson Measure Characterization of ’634(,1%90 (R™)

c4s2

In this section, applying the results obtained in previous sections, this thesis estab-
lishes the Carleson measure characterization of the anisotropic ball Campanato function
space D)qf,l,dﬁo (R™). To this end, this thesis first introduce the following anisotropic X -
Carleson measure.

Definition 4.2.1. Let A be a dilation, X a ball quasi-Banach function space and s €

(0,00). A Borel measure du on R™ x Z is called an anisotropic X —Carleson measure if

-1

1
A,s = )\z ® °
ldpl[x" := sup {Z[] ]'B(i)}
X

i=1 HlB(i) HX
" B9 1
DM i [ |- rdmx,k)@
j=1 HlB(J) HX B

< 00,

where the supremum is taken over all m € N, {B() 7, CB,and {)\j};nzl C (0,00), and,

for any j € {1,...,m}, B denotes the tent over BU), that is,

For the anisotropic X—Carleson measure, this thesis has the following equivalent char-
acterization.

s5p1| Proposition 4.2.2. Let A be a dilation, X a ball quasi-Banach function space, du a Borel
measure on R™" X Z, s € (0,00), and

-1

1
/‘\/A,S )\l S s
[dpl[x = sup {Z L} 13(0}
X

2 iyl

1 1
MR ]
; Iganllx /5o ’ ’
JEN B
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where the supremum is taken over all {BW} ey C B and {\;}jen C (0,00) satisfying

1
)\Z S s
S et | €00
Mpallx
X

i€N

) 147
Then [dpllx” = ldull 2"
A,
Proof. Let du be a Borel measure on R" x Z. Obviously, Hd,uH’;(’S < HduHXS. This thesis

next shows

——As A,
(4.2.2) laully” < lldul*

Indeed, for any {BUW};cy € B and {\j}jen C [0,00) as in the present proposition, by
Definition 1.2.4(iii), this thesis finds that

m i s s \B J)‘2 [/ }

lim AN B S P du(e, k
m=09 {; [HleHX] B()} Z zmllx /5 [dule, k)l
H 1
i) ’ Aj|BY)2 [/ }

{ZN [leHx] 7 )} Z Mpolx Law 140

Therefore, for any given ¢ € (0, 00), there exists an mg € N such that Z 1 Aj # 0 and

o |

11—1
i ® ° \:|BW 3 2
Sl ot | SEEE L e n
ien LItsollx  JeN 1pallx L/

l_l

o i ]5 : | B3 [/ ]5
< 2| 1 AZTVE N du(a k)| e
{; |:‘1B(i)HX B Z g lx L0 [y, )

Combining this, the arbitrariness of both {BU};cy € B and {\;};en C (0,00) as in the

present proposition, and e € (0, 00), this thesis further obtain (4.2.2) and hence complete

the proof of Proposition 4.2.2. O

In what follows, for any given k € Z, define

1 when j =k,

ok (J) =
0 when j # k.

Next, this thesis state the main theorem of this section as follows.
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Theorem 4.2.3. Let A, X, d, and 6y be the same as in Definition 2.2.1, po € (6p,2), and

¢ € S(R™) be a radial real-valued function satisfying (3.1.1) and (3.1.2).

(i) Ifh € ‘C%l,d,eo (R™), then, for any (z,k) € R"XZ, du(z, k) := Y ey |dexh(z)|*dz 54 (k)
is an X —Carleson measure on R™ X Z; moreover, there exists a positive constant C,
independent of h, such that

A9
ldplly™ < Clh]| za

X,1,d,8¢ (R™)-

(i) If h € LE (R™) and, for any (z,k) € R" x Z, du(z, k) := 3 ey |0 * h(z)|*dz 6, (k)

loc
1s an X —Carleson measure on R™ X Z, then h € E}% 1.d.60 (R™) and, moreover, there

exists a positive constant C, independent of h, such that

A0
hllcs ., @ < Claul

Remark 4.2.4. (i) Note that, if X is a concave ball quasi-Banach function space, then,

by Proposition 2.1.9, Theorem 4.2.3 gives the Carleson measure characterization of
Ly 4(RM).

(ii) If A :=2I,xn, then Theorem 4.2.3 was obtained in [103, Theorem 5.3].

To prove Theorem 4.2.3, this thesis needs the anisotropic tent space associated with
ball quasi-Banach function space and its atomic decomposition. This thesis first recall the
following concept.

Definition 4.2.5. Let A be a dilation and, for any x € R", let
D(z) :=A{(y, k) ER" X Z: y € v+ By},
which is called the cone of aperture 1 with vertex = € R".
Let a € (0,00). For any measurable function F': R™ x Z — C and = € R", define
1
2

Zbé/ |F(y, O dy|

ez {yeRn: (y,0)€(z)}

o (F)(z) ==

where I'(z) is the same as in Definition 4.2.5. A measurable function F' on R"™ x Z is said
to belong to the anisotropic tent space TQA”’(R” x Z), with p € (0, 00), if

1 | ppp en 7y = 1197 (F) | o my < 00

For any given ball quasi-Banach function space X, the anisotropic X-tent space T)‘? (R"xZ)
is defined to be the set of all the measurable functions F' on R" x Z such that o/ (F) € X
and naturally equipped with the quasi-norm HFHT)‘?(R”XZ) = || (F)|x-

This thesis next give the definition of anisotropic (Tx, p)-atoms.
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Definition 4.2.6. Let p € (1,00), A be a dilation, and X a ball quasi-Banach function
space. A measurable function a : R"™ x Z — C is called an anisotropic (Tx,p)-atom if
there exists a ball B C B such that

(i) supp a := {(z,k) € R" X Z : a(x, k) # 0} C B, where B is the same as in (4.2.1)
with BU) replaced by B.

(i) llall pap(gn gy < BIYP/|15]lx.

Moreover, if a is an anisotropic (T’x,p)-atom for any p € (1,00), then a is called an
anisotropic (Tx,00)-atom.

This thesis has the following atomic decomposition on the anisotropic X-tent space

T{(R™ x Z).

Lemma 4.2.7. Let A, X, and 0y be the same as in Definition 2.2.1 and F : R"xZ — C a
measurable function. If F € T#(R™ x Z), then there exists a sequence {\;}jen C [0,00), a
sequence {B(j)}jEN C B, and a sequence {A;}jen of anisotropic (T'x,00)-atoms supported,

respectively, in {BU)} ey such that, for almost every (z,k) € R" x Z,

F(a,k) =Y NAj(x, k), [F(e, k) =) |4z, k)|

jEN jeN
pointwisely, and
1
9 %
4.9.3 L ’ 1.0 < ||F
( <4 ) Z HIB(')HX BG) ~ || HTQ(R"XZ)’
ieN J
JE€ x

where the implicit positive constant is independent of F'.

Proof. For any j € Z, let
Oj:={zeR": &(F)(z)>2},
Fj .= (Oj)c, and, for any given v € (0,1),
(0j)F == {x eR": M(1p,)(x) >1—~}.

Then, by an argument similar to that used in the proof of [33, (1.14)], this thesis finds
that

supp F' C U@UE ,
JEL
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where E C R™ x Z satisfies that

/ dy = 0.
{yeR™: (y,l)EE}

Lel

Moreover, applying [33, (1 15)] this thesis concludes that, for any j € Z, there exists an
integer N; € NU {00}, {xkj }k 1 € (0;)3, and {lk}kNil C Z such that {x,(j) +B§Z)}kNil has
the finite intersection property and

N;

(4.2.4) = U [+ BY]

=1
= ¢ + BO U { [+ + BO]\ [ + BO] U

oA sy U )

<0

|—|?T‘

N
= U Bj,k-
k=1

Notice that, for any j € Z, {Bk}gil are mutually disjoint. Thus, ( 05); = Uk B k For
any j € Zand k € {1,...,N,}, let

—1
Flc,,,
X

—

(4.2.5) Cjs = Bjx N [(0 5\ (Oj41)3 ] Ajp =27 Hlx,gjuggﬂ
k

and \j = 2j||lz(]-)+B(j)\|X. Therefore, from (4.2.4), it follows that
k 1,

N; Nj
F=>Y N#djr and [F] =Y XAl

JEZ k=1 JEL k=1

almost everywhere on R™ x Z. This thesis now show that, for any j € Z and k €
1,...,N;}, A is an anisotropic (T4, oo)-atom supported in 2 + BY up to a harmless
J s X k Ik
constant multiple. Obviously,

o —

supp A C Cj C Bjk - a:,(j) Bl(]j).

In addition, let p € (1,00) and h € T2A’p/ (R™ x Z) satisfy HhHTA,p/(RnXZ) < 1. Notice that
2

—— C

Cix C(Oj)y = U T



Applying this, [33, Lemma 1.3], the Holder inequality, and (4.2.5), this thesis finds that

Z/ Ajk (y, € y,é)l(;]k(y,g) dy

j ka ‘ -
LETL
<>/ Ay, Oh(y, 0)] dy 5(0)
i<y (y,0) Uze(0j+1)fyc I(z)

5/ ¢ [Z/ b= Ay, Oh(y, 0)] dy] da
(Oj+1)° ez 7 {yeR™: (y,0)€l ()}

< [ o ) @ )

= {/(oj+1)“ [ (A2) () dx} {/(Om)n[%(h)(x)]p d:c}

-1
/ - [ (F) () dx
X (xg)+Bl(Z))m(O]-+1)c

Sy L

S |
Y e

B =

<977 . .
<2 Hlxg)JrB;Z)

. . l
< |CC](5) + Bl(lz)|p

~ Hlx(kj)JrBl(i) Ix’

which, combined with (T3 (R" x Z))* = T3P "(R™ x Z) (see [24, Theorem 2]), further
implies that

145kl o + B
s P (pn ~ .
PELTENE) YL 6y, o llx
Using this, this thesis finds that, for any j € Z and k € {1,..., N;}, A is an anisotropic
(T#,p)-atom up to a harmless constant multiple for any p € (1,00). Thus, for any j € Z
and k € {1,...,N;}, Aj, is an anisotropic (T#,00)-atom up to a harmless constant
multiple.

This thesis next prove (4.2.3). To achieve this, from (4.2.4), the finite intersection

; NN 1

property of {561(3) + BZ(Z)}QZI, the estimate that 1,)» < [M(1o,)]%, and Assumption
1.2.10, this thesis deduces that

Lo +BY)

¥y o ollx

1
0o %0
P (J>+B(J>\|X

X
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N g0 | %
= [W 1o, po
JEZ k=1
X
1 1
. 90 % . 1 90 %
<12 [#10,] S| {2 M0}
jez . jez <7
1 1
o o
< i1, )% y %
~ Z (210,) ~ Z (2 10]~\O]-+1)
JEZ X JEZ x
1
o
< || (F) D 10,0,41 = 1 (F)lx = [Fllpa®nxz)-

JET

X
This further implies that (4.2.3) holds true and hence finishes the proof of Lemma 4.2.7. [

This thesis now prove Theorem 4.2.3.

Proof of Theorem 4.2.3. This thesis first show (i). To this end, let h € 51)4(,1,11,90 (R™) and
{zj + By}, € B withm € N, {z;}]2; CR", and {[;}]2; C Z. Then this thesis easily
find that, for any 7 € {1,...,m},

d d d
(426)  h="PL g ht (h=Plp h) Loen o+ (A= P g, h) Ly, 0

)@ B
=B+ hP 4+ h$

where 7 is the same as in (1.2.4). For h;l), by the fact that [p, ¢(z)z*dz = 0 for any
a € 7 with |a| < d, this thesis concludes that, for any k € Z, ¢y, * hg.l) = 0 and hence

(4.2.7)

2
‘ dzr = 0.

/ e n)
keZ, {mER":(r,k)Em]-—l-Bl].}
For h§»2), from the Tonelli theorem and the boundedness on L?(R") of the anisotropic

g-function

g(h§2)) — lz ‘m . hgz)‘zl 2

keZ
(see, for instance, [47, Theorem 6.3]), this thesis infers that

kez / {z€R™: (z.k)€x;+ By }
<[ Sl w0
keZ
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d 2
— [ |pw) - P he)
zj+Bi4r

2
< / h(@) = PE o, ha)| do
zj+Bi4r !

J
+/
m]'+Blj+T

In addition, using Lemma 2.2.5, this thesis obtains, for any = € z; + By, 4,

Pl h Pl o h ? d
+Bl T ( ) +Bl (.’E) Z.

P i, ) = P, b(a)
- ng+Blj+T (h P itBy h) (x)‘

1 ‘ pd
S hy) = Pl o, . h(y)| dy.
|x] + Blj’ xj"'Bl]--Q—'r IJ+ btT

Thus, combining this with (4.2.8), Lemma 4.1.2, and Definition 1.2.4(ii), this thesis finds
that, for any m € N, {z; + By;}L; C B with both {z;}72; C R" and {[;}]; C Z, and
{)‘j}}nﬂ - (0700)7

- 2 iy, D
X

1 1—1
0 Iy
& o Vg e
i+By, T
||1xz+Bz Ix TS

1
2 2
X [ / - ‘qﬁk*hg-z)(:r)’ d:v]
LeZ {xER”:(x,k)EijrBlj}

-1

1
m A\ 0o 6o
< Z() Loct By e
X

o ||1-Ti+Bll-+7— HX

Xy 7Y [/ h(z) — ng+Blj+Th(3:)‘ dx]
j=1 zj+ B 47
1
+ / ‘h(az) . Th(x)‘ dz
’mj + Blj‘% xj+Blj+T z] bt
a1 -1
m A\, o 6o
S ———— | 1y,
; (’1$i+Bzi+rHX> ’ s
X

1

1
" Nilzi 4+ B2 2 2
XZ il y+r] / ‘h(gg)—ngJrBl}Hh(:n)‘ dx
zj+B. 4o /

j=1 Hlﬂﬁj-i-sz-‘--rHX
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1 / .
TR - (h(x)fpm, . h(x)‘dx
|$j+Bl~’% 25+By 4r i+Bi4r

< hlleg, ,, @+ 1Rlce

X,2,d,60 X.1,d,00(R™)

where
1
H{Z’L 1(|le +Bz — ||X)9011‘i+Bl.+7}00HX

[Epria 1(\\17; T8, ||X) Lo+, }60 Ix

J1 =

and, for any j € {1,...,m},

1
o) _ Mejemy e llx Njlaj + By o2
)=

ey, lx ety llx

This, combined with pg € (6p,2) and Corollary 2.2.7, further implies that

-1

1
m o 9o m 1
i )\j’x]‘—l-Bl.P
[s5es] (4.2.9) | luts, ST
izl<||1xi+3u||x) By XZ Leyrm Ix
3

X

2
[ / )qsk*hz()( da;]
kez ” {z€R™: (w, k)ExJJrBl }

<
” Hﬁ;‘“d@ (R7)*

Finally, this thesis deal with h§-3). To do this, letting s € (0,6p) and € € (%[% +

dlnl(;\;)],oo), this thesis has, for any j € {1,...,m} and (z,k) € xj/—i—_ﬁlj,

InA_

bk T

‘ébk * h§3) (;C)‘ < h(y) — PﬁﬁBljh(y)‘ dy

/ InA_
(xj+Blj+T)c [bk + p(x — y)]l"'a b
InA_

bk T

N/ TnA_ ‘h( ) — PdJrBl h(y)‘ dy
(o4 B0 [bF + p(a; — y)]Fe e

bf’f“f:{ belj% J
= llm/ o L ’h(y) - ij—i-Bljh(y)‘ dy
b e @it By [pa; — )] e |
bakihin)\b_ / balj %
~ T T Inia_ InXx_ InX_
bslj% (2j+Bi,+7)° plillteTg) o [p(z; — y)}1+5 Tob
% h(y) = P2y, b)) dy.
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(4.2.10)

From this and Theorem 4.1.1, it follows that, for any m € N, {z; + By, }]*; C B with both
{z;}7L) CR" and {[;}72, C Z, and {A;}]2; C (0, 00),

1 -1

0
m )\Z 0 90 m )\]’mj +Blj‘%
Z 1 T a4 B, Z
i=1 zit B [1X j=1
X

Meyra Ix
@ g0l
X - ’¢k*hj (x)‘ dx
LeZ {xER”:(J},k)E:{:j—FBlj}
-1

1
m to 9 m
by Alzj + B |
SIKSS <> Los, PP AT
X =

i—1 Hlﬂﬁi-f-BziHX 1 Hlx,j-f-BleX

b () Py ip M)

x Z bR / AP
b=—oc (214 Buye)® BT+ [p(a; — )] R

<
~ HhHﬁfc’,i,d,e Hh”Ldee (R

Combining this, (4.2.6), (4.2.7), and (4.2.9), we conclude that

1 -1

(7
f Cn L | Sl B
i+B. BT
=\ eiimy, lIx HX B = ayrm, lIx
X
1
2
x Z/ e h(@)? da
kel {$€Rn(x,k)€x]+BlJ}
Sk ||z:§1d9 (R™)»

which, together with the arbitrariness of m € N, {z;+B;;}7* | C B with both {z;}7, C R"
and {l;}7, C Z, and {\;}7%; C (0,00), further implies that, for any (z,k) € R" x Z,

du(z, k) == |y * h(z)|* dz

is an X—Carleson measure on R™ x Z. Moreover, there exists a positive constant C,
independent of b, such that HduHXQO S ||hl pa (rn)- This finishes the proof of (i).

X,1,d,0q
This thesis now prove (ii). To this end, let f € Hﬁfﬁd%
greater than zero. Then f € L*°(R™) with compact support. From this, the assumption

that h € L2 (R™), and [33, (2.10)], it follows that

(R™) with the quasi-norm

~

| J@h@)de| ~ 1) | dux f@)on x (@) de

kEZ
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In addition, by the assumption that f € H )‘?(R") and Theorem 3.1.4, this thesis finds that

Ik % Fllranszy ~ 11l agn < oo

which, combined with Lemma 4.2.7, further implies that there exists a sequence {\;};en C
(0,00) and a sequence {Aj}jeN of anisotropic (T )f(‘, oo)-atoms supported, respectively, in
{@j + By, }jen with {x; + By, }jen C B such that, for almost every (z,k) € R" x Z,

b * flz Z)\A (z, k)
JEN
and
1

0o )
by
0<|lk> (,) "y <1l
X

JEN ’1$j+Blj ”X

From this, (4.2.10), the Hélder inequality, the size condition of A;, and the Tonelli theorem,
this thesis infers that, for any f € H)’? o0 (Rny

fin

f(@)h(z) dx

R

<ZZ)\/ i@, K)| |or + h(z)| da

keZ jeN

<> [Z/

jEN kez ” {z€R™: (z,k) E:EJJrBl }

1
2

|Aj(z, k)2 dx]

N

X

[ / o) da:]
LeZ {xER":(x,k)€$j+Blj}

=> ) [Zb’“/

jEN keZ {zeR": (z,k)€l(y)}

1
2

A, k)2 dw/

dy
{yeR™: ycx+ By}

N[

X

[ / o) da:]
LeZ {:):E]R":(:):,k)G:Ej+Blj}

=) A ll4jllpazgn [ / |61, * h(z)|? dx]
Z T (RrXZ) ;Z w€R™: (z,k)€x;+ By, }

JEN
|6k * h(x)|” dw]

ol

N

;i |.CC]+B1 ’2

DI Foen Py

S Hf||H;(Rn)||duHX’ :

a4, 1 x keZ/{xeRn:(x,k)exﬁEj}
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which, together with Theorem 2.2.6, Proposition 4.2.2, and Corollary 2.2.7, further implies
that

A6
leg oy < Il
This finishes the proof of (ii) and hence Theorem 4.2.3. O
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Chapter 5

Several Applications

In this section, this thesis applies Theorems 2.2.6, 3.1.4, 3.1.5, 3.1.6, 3.2.1, 3.3.1,
3.3.2, 4.1.1, 4.1.3,and 4.2.3 as well as Corollary 2.2.7 to seven concrete examples of ball
quasi-Banach function spaces, namely Morrey spaces (see section 5.1 below), Orlicz-slice
spaces (see Subsection 5.2 below), Lorentz spaces (see section 5.3 below), variable Lebesgue
spaces (see section 5.4 below), mixed-norm Lebesgue spaces (see Subsection 5.5 below),
weighted Lebesgue spaces (see section 5.6 below), and Orlicz spaces (see section 5.7 below).
Particularly, in section 5.1, we give an example to point out that Theorems 3.2.1, 3.3.1,
and 3.3.2 can not be applied to the Morrey space because its norm lacks concavity.

5.1 Morrey Spaces

Recall that the classical Morrey space M} (R™) with 0 < ¢ < p < oo, originally intro-
duced by Morrey [78] in 1938, plays a fundamental role in harmonic analysis and partial
differential equations. From then on, various variants of Morrey spaces over different
underlying spaces have been investigated and developed (see, for instance, [18, 83]).

Definition 5.1.1. Let A be a dilation and 0 < ¢ < p < co. The anisotropic Morrey space
M 5 4(R™) is defined to be the set of all the measurable functions f on R" such that

1 1
117 ey = sup [1BIZ 41 fllgoc) | < oo,
’ BeB

where B is the same as in (1.2.3).

It is easy to show that, Mg 4(R™) is a ball quasi-Banach function space. From
this and [97, Remark 8.4], this thesis deduces that Mé’ 4(R™) satisfies both Assump-
tions 1.2.10 and 1.2.12 with X := MgA(R”), p— € (0,q], 6o € (0,p), and py € (p,0),
where p := min{p_,1}. In what follows, this thesis always lets HM;’A(R”) be the
anisotropic Hardy—Morrey space which is defined to be the same as in Definition 2.1.1
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with X := Mf’A(R”). Then, applying Theorems 3.1.4, 3.1.5, and 3.1.6, this thesis obtains
the following characterizations of H Mg 4(R™), respectively, in terms of the anisotropic
Lusin area function, the anisotropic Littlewood—Paley g¢-function, and the anisotropic
Littlewood-Paley g3-function.

Theorem 5.1.2. Let A be a dilation and 0 < ¢ < p < co. Then Theorems 3.1.4, 3.1.5,
and 3.1.6 with X := M ,(R") and X € (2/ min{1, ¢}, 00) hold true.

Remark 5.1.3. (i) This thesis point out that Theorem 5.1.2 is completely new.

(ii) However, Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 can not be
applied to the anisotropic Morrey space M 5 4(R™) because M 5 4(R™) does not have
an absolutely continuous quasi-norm.

Moreover, M:A(]R") may not be gg-concave. Indeed, let A := 2I,x,, 0 < ¢ < p < 00,
and qo € (p,1]. Assume that {f,}}2, are the same indicator functions of the cubes with
volume 1 as in [41, (2.4)] with ¢ := L, p:= £ and r = oo therein. Then, by [41, Theorem
2.15] with the same & therein, this thesis concludes that

oo o
DA, = 1Sl 2 .~ llalle =1 < > el & =00
k=1 M? (R™) %( ) k=1 %(

0

where a := (1,...) € [*°. Thus, M}(R"™) is not go-concave. Therefore, Theorems 3.2.1,
3.3.1, and 3.3.2 can not be applied to Morrey spaces and have their limitation because of
their dependence on the concavity of norms.

However, when A := 2I,,x,, 0 < ¢ < p <1, and X := MC‘ZA(R”), Theorems 3.2.1,
3.3.1, and 3.3.2 were obtained by de Almeida and Tiago, respectively, in [28, Theorem
3.3, Remark 3.4, and Proposition 3.8] via using a quite different atomic characterization
of Hardy—Morrey spaces from Lemma 3.2.4 to avoid the dependence on the concavity of
| - lazz®n)- But, for a general dilation A, this is still unclear so far.

5.2 Orlicz-Slice Spaces

Recently, Zhang et al. [106] originally introduced the Orlicz-slice space on R™, which
generalizes both the slice space in [2] and the Wiener-amalgam space in [29]. They also
introduced the Orlicz-slice (local) Hardy spaces and developed a complete real-variable
theory of these spaces in [105, 106]. For more studies about Orlicz-slice spaces, this thesis
refers the reader to [44, 45].

Recall that a function ® : [0,00) — [0,00) is called an Orlicz function if it is non-
decreasing, ®(0) = 0, ®(¢) > 0 for any ¢ € (0,00), and limy_, o, ®(t) = co. The function
® is said to be of upper (resp. lower) type p for some p € [0,00) if there exists a positive
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rliczslice

constant C' such that, for any s € [1,00) (resp. s € [0,1]) and ¢ € [0,00), D(st) < CsPP(t).
The Orlicz space L®(R") is defined to be the set of all the measurable functions f on R™

such that
1l = inf{A c0o): [ @ ('f(j”> iz < 1} .

Definition 5.2.1. Let A be a dilation, ¢ € Z, ¢ € (0,00), and ® be an Orlicz function.
The anisotropic Orlicz-slice space (E3 ) 4 (R™) is defined to be the set of all the measurable
functions f on R™ such that

1

£ 10s 8, |l Lo grny | ’
f q ny 1= / dr <o
112, 4 Rm) re | 11t B, Lo @n

where By is the same as in (1.2.2).

Let A be a dilation, ¢ € Z, ¢ € (0,00), and ® be an Orlicz function with positive lower
type pg and positive upper type p;f. Then, by the arguments similar to those used in the
proofs of [106, Lemmas 2.28 and 4.5], this thesis finds that (E§ ), 4 (R") is a ball quasi-
Banach function space and has an absolutely continuous quasi-norm. From these and [97,
Remark 8.14], this thesis deduces that (EJ )y 4(R™) satisfies both Assumptions 1.2.10 and
1.2.12 with X := (Ed)¢a(R"™), p— € (0,min{pg,q}], 6o € (0,p), and py € (max{p3,q},0c0),
where p := min{p_,1}. In what follows, this thesis always lets (HE] )¢ 4(R™) denote the
anisotropic Orlicz-slice Hardy space which is defined to be the same as in Definition 2.1.1
with X = (Eg))gyA(Rn).

Moreover, by Theorems 2.2.6, 4.1.1, 3.1.4, 3.1.5, 3.1.6, 4.1.3, and 4.2.3 as well as
Corollary 2.2.7 with X replaced by (E§ ), 4(R™), this thesis obtains the following conclu-
sion.

Theorem 5.2.2. Let A be a dilation, { € Z, q € (0,00), and ® be an Orlicz function with
positive lower type pg. Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X :=
(Ed)e,a(R™) hold true;

(ii) Theorems 8.1.4, 3.1.5, and 3.1.6 with X = (E})¢ a(R") and X € (m,oo)
also hold true.

Remark 5.2.3. This thesis point out that Theorem 5.2.2 is completely new.

Let ¢ € Z, g € (0,1), ® be an Orlicz function with positive lower type pg and positive
upper type pg satisfying 0 < pg < p;f < 1, and

vern || Ggma ) w2
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Then, by [97, Remark 8.14], this thesis concludes that (E§)e 4(R") satisfies all the as-
sumptions of Definition 2.1.1 with X := (E¥), a(R™), p— € (0, min{pg,q}], 6o € (0,p—),
and pg € (max{p$, q},00). Moreover, choose gy = 1. On the one hand, from [106, Lemma
5.4], this thesis infer that, for any non-negative measurable functions { fi}2°,,

o
>

k=1

Yol L <
k=i (aeaEO () (R0

On the other hand, this thesis has, for any B € B,

1
(5.2.1) 15l g9, 4@ 2 min{|B|, |B|70 }

Indeed, for any B € B with |B| > |By],

1

118Lesmllo@n ]’ |
5.2.2 18ll(Eg)eamr) = / dm
(5.2.2) 1Bll(z2), ,@n) { n[ 1Lz B, [l Lo @n)

1

a 1
Z(/ldm) = |B|a.
B

On the other hand, for any zq € R™, k € Z with |By| < |By|, x € B(zo,\"), and 7 €

(0,pg), by [99, Remark 4.21(iv)], this thesis concludes that L®(R™) satisfies Assumption
1.2.10 with X := L*(R"), u := 1/n, and p := 7. Thus, this thesis obtains

(5.2.3) e o gany 2 1M (Lo 5171 e -
For any y € x 4+ By, this thesis has

B
Voo, (2) dz > 12H

(5.2.4) M<1Z‘O+Bk)(y) | By|

Z -
’BZ‘ Z‘-i-Bg

Combining (5.2.3) and (5.2.4), this thesis concludes that

By, 1/n
["BZ,‘aM)}

n

H1$O+Bk‘|z<l>(Rn) < 2 | Brl Hlx—l-BZH?p(Rn)-

L%®(R)

Therefore, this thesis obtains

1

| Loo+-5, Lot B |l o () | ‘
(5.2.5) ao+ Bl (£2), 4 (RP) = - dx

11248, [l Lo (mny

1

q 1

> / L2+ B, | L2 (R i /
B(zo,\%) ||1:v+BgHL<I’(Rn)
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1
q
> | Bg| /" / ldxy ~ |Bg|Y7.
B(z0,2\%)

By (5.2.2) and (5.2.5), this thesis finds that, for any B € B,
1150 (p9), 4zm) 2 1BV Z |BIif |B| = | Byl
and
115l (59, 4n) 2 |BIYPe Z |BIV% if |B| < |By.

This finishes the proof of (5.2.1).

Therefore, all the assumptions of Theorems 3.2.1, 3.3.1, and 3.3.2 with X := (E{ ), 4(R")
are satisfied. Applying Theorems 3.2.1, 3.3.1, and 3.3.2, this thesis obtains the following
conclusion.

liczslice2| Theorem 5.2.4. Let ¢ € Z, q € (0,1), and ® be an Orlicz function with lower type pg
and upper type pjg satisfying 0 < pg < p;f < 1. Then Theorems 3.2.1, 3.3.1, and 3.3.2
with X replaced by (E)e a(R™) hold.

liczslice2| Remark 5.2.5. This thesis point out that Theorem 5.2.4 even when A := 21, is com-
pletely new.

5.3 Lorentz Spaces

Let p € (0,00] and ¢ € (0, 00]. Recall that the Lorentz space LP4(R™) is defined to be
the set of all the measurable functions f on R™ with the following finite quasi-norm

[q /Ow{t;f*(w}q it] if ¢ € (0, 00),

(5.3.1) I fllLpany := § P )
sup [ﬁf*(t)} if ¢ =00
te(0,00)

with the usual modification made when p = oo, where f* denotes the non-increasing
rearrangement of f, that is, for any t € (0, 00),

F1(t) = {a e (0,00): dy(a) <t}

with d¢(a) == [{x € R" : |f(x)] > a}| for any « € (0, 00).

Then, by [99, Remarks 2.7(ii), 4.21(ii), and 6.8(iv)], this thesis concludes that LP»4(R™)
satisfies all the assumptions of Definition 2.1.1 with X := LP¢(R"), p_ € (0,p], 6y € (0, p),
and py € (p,00), where p := min{p_, 1}, and has an absolutely continuous quasi-norm.
In what follows, this thesis always lets H?(R") be the anisotropic Hardy—Lorentz space
which is defined to be the same as in Definition 2.1.1 with X := LP9(R"). By Theorems
2.2.6, 3.1.4, 3.1.5, 3.1.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X replaced
by LP4(R™), this thesis obtains the following conclusion.
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Theorem 5.3.1. Let A be a dilation, p € (0,00), and q € (0,00]. Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X = LP4(R"™)
hold true;

(ii) Theorems 3.1.4, 3.1.5, and 3.1.6 with X := LP9(R™) and X € (2/ min{1, p},00) also
hold true.

Denote by P(R™) the set of all the measurable functions p(-) on R™ satisfying

(5.3.2) 0 < p~ :=essinfp(x) < esssup p(x) =: p1 < 0.

TER™ TERM
Denote by C°8(R™) the set of all the functions p(-) € P(R") satisfying the globally log-
Holder continuous condition, that is, there exist Clog(p), Coo € (0,00) and pss € R such
that, for any =,y € R”,

(Ho (p)
P@) =P < e T e =T
and C
Ip(x) = pecl = {0y

Remark 5.3.2. Let p(-) € C'°8(R") and ¢ € (0,00). This thesis point out that Theorem
5.3.1(i) is a special case of [71, Theorems 1 and 2] with p(-) = p € (0, 00) therein and that
Theorem 5.3.1(ii) improves the corresponding results in [76, Theorems 2.7, 2.8, and 2.9]
by widening the range of p € (0,1] into p € (0,00). Although the variable Hardy—Lorentz
space Lp(')’q(]R”) is also a ball quasi-Banach function space, [71, Theorems 1 and 2] can
not be deduced from Theorems 2.2.6 and 4.2.3. This is because the boundedness of the
powered Hardy—Littlewood maximal operator on the associate space of Lp(')’q(R”) is still
unknown, which makes it impossible to verify Assumption 1.2.12 with X := Lp(')’q(R”).

Moreover, choose gy € (max{p, ¢}, 1]. From [55, Theorem 6(iii)] and [40, Proposition
1.4.5(13)], this thesis deduces that there exists a positive constant C' such that, for any
non-negative measurable functions {f;}7°,

a a 2@ a
0 q0 o a0 0 a |7
— — 90
[Z |!fk||L§),q%(Rn)] [Z lla 21] >\ N
k=1 k=1 0Pt k=1 La 1
'p
9 a9
© 40 ° 0
<C (Z fk> =C|>_ fr
k=1 k=1 A
A a_
g
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—o|Sn|”

k=1

Pr g
L4070 (R")

with A the same as in lines 6-7 of [55, p.270], which further implies that

>
k=1

o

<
> kaHL%,%(Rn) <C Y
k=1 L9090 (R")

Moreover, by (5.3.1), for any B € B,

1
q (Bl ey |° 1 _ 1
tallmany = L [ 65 b = 81> > min {15, Bl }.
PJo

Therefore, all the assumptions of Theorems 3.2.1, 3.3.1, and 3.3.2 are satisfied with X :=
LP(R™). Applying Theorems 3.2.1, 3.3.1, and 3.3.2, this thesis obtains the following
conclusion.

Theorem 5.3.3. Ifp € (0,1) and q € (0,1), then Theorems 3.2.1, 3.3.1, and 3.5.2 with
X replaced by LP4(R™) hold.

Remark 5.3.4. This thesis point out that Theorem 5.3.3 even when A := 21,y iS com-
pletely new.

5.4 Variable Lebesgue Spaces

For any p(-) € P(R"), the variable Lebesgue space LPC)(R™) is defined to be the set
of all the measurable functions f on R” such that

/ @) P dz < oo,

equipped with the quasi-norm || f|| L0 (R defined by setting

p(z)
(5.4.1) £l ot @y = inf{A € (0,00) : / [If(;)q d < 1}_

Let p(-) € C'8(R"). Then, by [99, Remarks 2.7(iv), 4.21(v), and 6.8(vii)], this
thesis concludes that LP()(R") satisfies all the assumptions of Definition 2.1.1 with X :=
LP(')(]R")7 p— == p_, 0y € (0,p), and py € (py,o0], where p_ and p} are the same as

in (5.3.2) and p := min{1,p_}, and has an absolutely continuous quasi-norm. In what

follows, this thesis always lets Hz(')(R") be the anisotropic variable Hardy space which is
defined to be the same as in Definition 2.1.1 with X := LP()(R™). Moreover, by Theorems
2.2.6, 3.1.4, 3.1.5, 3.1.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X replaced
by LPO)(R™), this thesis obtains the following conclusion.
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Theorem 5.4.1. Let A be a dilation and p(-) € C'°8(R™). Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X := LPC) (R™)
hold true;

(ii) Theorems 3.1.4, 3.1.5, and 3.1.6 with X = LP)(R™) and X € (2/min{1,p_},c0)
also hold true, where p_ is the same as in (5.3.2).

Remark 5.4.2. This thesis point out that Theorem 5.4.1(i) was also obtained in [48, The-
orems 1, 2, and 3, and Corollary 1] and Theorem 5.4.1(ii) improves the corresponding re-
sults in [72, Theorems 6.1, 6.2, and 6.3] by widening the range of A € (14-2/ min{2,p_}, o0)
into A € (2/ min{l,p_}, 00).

Let A be a dilation and p(-) € C'°8(R") satisfy 0 < p— < p; < 1 and

e[| (& -] +2)

Then, by [99, Remarks 2.7(iv) and 4.21(v)], this thesis concludes that LP()(R™) satisfies
all assumptions of Definition 2.1.1 with X := LPO(R™), p_ € (0,p_], f € (0,p_), and
po € (p+,0). Moreover, choose qg € (p+, 1]. On the one hand, from [102, Remark 2.1(iv)],

this thesis deduces that, for any non-negative measurable functions { f}32,,

> fk

k=1

oo
Sl w0 <
k=1 Lo (R)

()
L' (R?)

On the other hand, by (5.4.1), this thesis finds that, for any B € B,
L L 1 L
H].B”Lp(.)(Rn) Z min {‘B’EL , ‘B‘Pf } > min {’B’qo , ‘3’90 } .

Thus, LP()(R") satisfies all the assumptions of Theorem 3.2.1 with X := LPO(R™). In
this case, Theorems 3.2.1, 3.3.1 and 3.3.2 were obtained, respectively, in [67, Theorems 1,
2 and 3.

5.5 Mixed-Norm Lebesgue Spaces

Let p:= (p1,...,pn) € (0,00]". Recall that the mized-norm Lebesque space LP(R™) is
defined to be the set of all the measurable functions f on R™ such that

P3 D

551) Ul =3 [ -+ [ Ry dwz] - de,

83



is finite with the usual modifications made when p; = oo for some i € {1,...,n}.

Let p € (0,00]". Then, by both [104, p.2047] and [47, Lemmas 3.2 and 4.4], this thesis
concludes that LP(R™) satisfies all the assumptions of Definition 2.1.1 with X := LP(R"),
p—:=p_, b € (0,p), and pg € (6o, 00), where p_ := min{pi, ...,p,} and p := min{1,p"},

and has an absolutely continuous quasi-norm. In what follows, this thesis always lets

Hg(]R”) be the anisotropic mized-norm Hardy space which is defined to be the same as in
Definition 2.1.1 with X := LP(R™). Moreover, by Theorems 2.2.6, 3.1.4, 3.1.5, 3.1.6, 4.1.1,
4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X replaced by LP(R"), this thesis obtains

the following conclusion.

Theorem 5.5.1. Let A be a dilation and p € (0,00)™. Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.8 as well as Corollary 2.2.7 with X := LP(R™)

hold true;

(ii) Theorems 8.1.4, 8.1.5, and 8.1.6 with X := LP(R™) and A € (2/ min{1,p_},oc) also

hold true, where p— := min{p1, ..., pn }.

Remark 5.5.2. (i) This thesis point out that Theorem 5.5.1(i) was also obtained in
[49, Theorems 3.4, 4.1, and 5.3, and Corollary 3.9] and Theorem 5.5.1(ii) improves
the corresponding results in [47, Theorems 6.2, 6.3, and 6.4] by widening the range
of A€ (14 2/min{2,p=},00) into A € (2/ min{l,p_}, c0).

(ii) Let @ := (a1,...,an) € [1,00]". Then Theorem 5.5.1(i) with

21 () ...

0 202...
A=

0 0

. 20n

0

0

gives the dual space of the anisotropic mixed-norm Hardy space H g (R™) which was

introduced in [20, Definition 3.3] and completely answers the open problem on the

dual space of H g (R™) proposed in [20].

Let p € (0,1)", choose gy € (p+,1]. From (5.5.1) and [68, (9)], this thesis deduces
that, for any non-negative measurable functions {f;}7°, and any B € B,

[e.e]

SRl = <cC
L0 (R)

k=1
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and
1 1 1 1
Loy 2 in { BI75, |BI7 | = min {|B15, 151% }.

Thus, LP(R") satisfies all the assumptions of Theorem 3.2.1 with X := LF(R"). In this
case, Theorems 3.2.1, 3.3.1 and 3.3.2 were obtained, respectively, in [68, Theorems 3.1,
4.1 and 4.3].

5.6 Weighted Lebesgue Spaces

Let p € (0,00] and w € A (A). From [99, Remarks 2.7(iii), 4.21(iii), and 6.8(v)],
this thesis deduces that L%, (R™) satisfies all the assumptions of Definition 2.1.1 with X :=
LA (R™), p— € (0,p/qu], 6o € (0,min{1,p_}), and p € (A, 00), where g,, is the same as in
(3.1.10), and has an absolutely continuous quasi-norm. In what follows, this thesis always
lets HL(R™) be the anisotropic weighted Hardy space which is defined to be the same as
in Definition 2.1.1 with X := L,(R™). By Theorems 2.2.6, 3.1.4, 3.1.5, 3.1.6, 4.1.1, 4.1.3,
and 4.2.3 as well as Corollary 2.2.7 with X replaced by L%, (R™), this thesis obtains the
following conclusion.

Theorem 5.6.1. Let A be a dilation, p € (0,00), and w € Ax(A). Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X := L,(R")
hold true;

(ii) Theorems 3.1.4, 3.1.5, and 3.1.6 with X := LL,(R™) and X\ € (2/ min{1, ¢, /p}, o)

also hold true, where q, is the same as in (3.1.10).

Remark 5.6.2. This thesis point out that Theorem 5.6.1(i) is completely new and The-
orem 5.6.1(ii) improves the corresponding results in [58, Theorems 2.14, 3.1, and 3.9] by
widening the range of p € (0,1] into p € (0, 00). However, Theorems 3.2.1, 3.3.1, and 3.3.2
can not be applied to Weighted Lebesgue Spaces since (3.2.2) may not hold true when
X = L5(R").

5.7 Orlicz Spaces

Let ® be an Orlicz function with positive lower type pg and positive upper type
pes. From [99, Remarks 2.7(iii), 4.21(iv), and 6.8(vi)], this thesis deduces that L®(R™)
satisfies all the assumptions of Definition 2.1.1 with X := L*(R"), p_ € (0,pg), 6o €
(0,min{pg,1}), and po € (max{pg, 1}, 00), and has an absolutely continuous quasi-norm.
In what follows, this thesis always lets H$(R™) be the anisotropic Orlicz—Hardy space
which is defined to be the same as in Definition 2.1.1 with X := L®(R"). Moreover, by
Theorems 2.2.6, 3.1.4, 3.1.5, 3.1.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X
replaced by L®(R™), this thesis obtains the following conclusion.
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Theorem 5.7.1. Let A be a dilation and ® an Orlicz function with lower type pg € (0,00).
Then

(i) Theorems 2.2.6, 4.1.1, 4.1.3, and 4.2.3 as well as Corollary 2.2.7 with X := L®(R")
hold true;

(ii) Theorems 3.1.4, 3.1.5, and 3.1.6 with X := L*(R") and A € (2/ min{1, pz },00) also
hold true.

Remark 5.7.2. This thesis point out that Theorem 5.7.1(i) is completely new and The-
orem 5.7.1(ii) improves the corresponding results in [58, Theorems 2.14, 3.1, and 3.9] by
widening the range of pg € (0, 1] into pg € (0, 00).

Moreover, choose gy € (pg,1]. Then, from [106, Remark 5.3] and [46, (25)], this thesis
deduces that, for any non-negative measurable functions {f;}3, and any B € B,

> f

k=1

oo
> Il 1<
k=1 [L® (R)] 90 [[/P(Rn)}%
and
L 2 N 1
10l ey 2 min {3176 | B | 2 min { B, % .
Therefore, all the assumptions of Theorems 3.2.1, 3.3.1, and 3.3.2 are satisfied with X :=

L®(R™). Applying Theorems 3.2.1, 3.3.1, and 3.3.2, this thesis obtains the following
conclusion.

Theorem 5.7.3. Let ® be an Orlicz function with lower type pg and upper type pg
satisfying 0 < pg < pjg < 1. Then Theorems 3.2.1, 3.3.1, and 3.3.2 with X replaced by
L®(R") hold.

Remark 5.7.4. This thesis point out that Theorem 5.7.3 even when A := 21, «, is com-
pletely new.
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Hh ST A A R

TEBCF R 22 SR s, R8s R) R LS AR e — B BT T B T 2
—. VP2 AR A R IE 2 AR P S (0] ) it R R 5 NI . AERR IR 28 [/] R™ b,
£ Hardy 23[R FOHEIIS IR M 2 VT 2 0 P R 1A BEAEH, 124 1L T 4152
T RFEM T BRI JE; E58 Hardy 2[R _E, AEAXMEERE, BIA R4 R4 0
BMO(R"), /& Hardy %58 HY(R™) [%$HE 250, iX /2 Fefferman 1 Stein[34] #2H 1.
WAk, 11545 H /2, Taibleson H1 Weiss[88] 25t [ p € (0,1] Ay Hardy =[5] HP(R") {
SEROHEIETE, (I B HP(R™) YXHE =S (A g% IE B & B Campanato[16] 5| A H4H#E
Campanato Z5[H].

Fritbz fb, 1972 47, Fefferman FI Stein[34] $2HH T —E 4409 R8T, R a0 (o) 21 @ £ i
Hardy %5[H] HP(R™) HHYeR%L f B9 Fourier -t ]? 1980 4, Taibleson #/1 Weiss[88] JiEHH
T NTAEESERN p € (0,1],f € HP(R™) 1 Fourier A # 5 LL R F AL RS —
2, 2] 7 Hardy-Littlewood ASEZRYHE (2, [86, p. 128]).

I, Sawano %8 A [81] HIkTIA 7Bkl Banach REAS[H] X, g4 1 [3]
[ Banach pRE{Z5H], 51N T X HHKAH Hardy =5[H] Hx(R"), ;X4 Hardy %73[H]
R FEHEAE T — DHEZR. 5 —J71, M 1970 FEARTTIG, AT AT v IR £
HHpR AL N R™ 4 Ji 31 2% i 25 AR HY 25 0] S 1t B A A s R >R H a3, 2,
[22, 36, 38, 39, 42, 77, 85, 89, 91, 92]. 2003 4F, Bownik[4] B| AFERFST T & 51 Hardy
Z3 0] HY(R™), Hr p € (0,00),4 & R™ E— M 5K . Wang 55 A [97) H K5I
WIERS A Rl X #BHER &0 5 Hardy 280E] HE(R™), HA i s o s s 7
ARFEFR T2 E HE(RY), HE2] T HE(R™) L& S Calderén-Zygmund &1
A A, 2 [103] 5%, — N HARMIIBHIEL 7 GBS HE(R) L% &
¥ Littlewood-Paley PRUHIE & Fourier 45#, FHIER HE(R™) HIXHE 28 )2 75 4 & 1) 5
PEER Campanato PR%ZS[H], 185 Carleson I S Z1 )X 1~23 R ?

RSO IRA [l ZE HH E RIS, 48 5 Bk Campanato ZS[]LAN S A fl X
HBAE R B 25 R S Bk Hardy 28 [A) B9 SEARRRAE. ASCEE I TR A RRZEMH EE N —1
ARG, 5IN T 510 Bk Campanato pRECAS(A]. T 1% 23 8] LA SR FIO 4,
FERET R | e TR, SER T HG(R™) A% 23 A] 1 2 4% ) 5Bk Campanato 5
s AN, Gl X SR S Lebesgue 23[R, ASCEN. T HE(R™)
%17 5 Littlewood-Paley BRACREE. ASCBIEI T f € HE(R™) B9 Fourier 254 f &5
R™ B —MMELLREL F AE] SO AR ST — 8, WX — SR TR 71 Fourier 4%
AR — ARG, #1581 7T HE(R™) ) Hardy-Littlewood ANZEAHE. 4
A HER™) (X HBEFAS X A4 10 Sk o 2 T S 7oA, 7T A3 T &1 5%
PEBk Campanato sEUZS R Carleson I BEARFHE. &5 AR SO LA B ATE S5 R H T Bk
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FOT RIS 25 [, e B IR EA T T4 B, A SRS 1 LA AT T8

v HRY) LA g, (RY) RO

X7, B 5 i — L2y .

4 N:={1,2,...},Zy := NU{0},Z"% := (Z4)", LAK 0 £oR R™ (R & XN L
HIEPR o = (o, ..., an) € ZF FUEREN © = (21,...,2n) ER", EX |af == a1+ +an,
9% = ()™ - (p2)™, LhBe 2 = 2. ] C FR—A EF K, BNEUERY
MW FESHTCK, AR RSN FPITEORFRBME. TH C,..) BRIKB TR E S
o ... WIERE 55 fSgFRNf<Co A fSgHgS fLWEE f~g % f<Cg
Hg=hrg<h WEE fSg=hE fSg<h MTER qe[l,00], H ¢ FnH#%
BAgAR, B, 1/q+1/¢ =1 XTHEE v e R, H 2| R 2 W n ERILERES. & E
&R I8, T 1p FoRHAHER &, ] B FOREEA R\ B, XTAEEN r € (0,00) F
z € R, H Bz, r) 3L o AB 220 r 198k, B, B(z,r) :={y e R": |z —y| <r}.
XTAEEREK B, il g RRHID, rp FoRHAPE, HHXTEER A € (0,0), H AB
Fons B FIOIIEK, 1R Mrp. B € = 07 FIRMFAE ap € (0,00) 15 € € (0, )
HHe—0. X MY ZPMHATEE - Ix - [ly sEsiEaE; X <Y F5
X CY HHAEERE C, MR THEEN f e X, fly < Clfllx. &)a, HEW—1E
L (BERIEEE) I, SUR A0 BRd 2 BRI iy 8 — 845

Hyk, BEE—L 5 T4E (20, (4, 43]) FIEkHEL Banach sK%=3 0] (20, [60, 61, 81,
95, 96, 100, 104]) [UFF-ZHIMES. E5GRIE [4] HF 4 7k 48 O HES.

h-dilation| EX 1. — 1 n xn WYSLEE[E A 252

min |A| > 1,
A€o (A)

WUFRIE N 7 3K 46 (TR FR AP 48 ), Hih o(A) 208 A MATAREERSES.
B A Z YRR, JRE

ch-2.14.x1]| (1) b:=|det A,

Hrfrdet A 78 A AT K. 17 A= (aij)i<ij<n & DY KAFE, W4T HOE L

Al = (D lass )72,
1,j=1
SR H [4, P 6, (2.7)], ATLAMS b € (1, 00), FFHAFAE— M IFRIXIFRIFERL A, 15 |A] =1
JRAZ, LA —A r € (1,00), fif5 A C rA C AA 52 (2[4, p. 5, Lemma 2.2]), A4,
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MNFER keZ,

(2) By, := AFA
HRIEITEE, By, C rBy, C By, JH | By = b5, X THEE 2 € R* fl k € Z, WiEk = + By #
FROMA® 45 2k £e82 FORINTTIEH, A0S B 2 A X R R 4a sk &4, B,

[ch-ball-B] (3) B:={z+By: xeR"keZ}
IFHA
[ch-tau] (4) ri=inf{iez: o' 22},
B A, Ay € (0,00) Tl
(5) 1< <min{|\: A€co(4)} <max{|\: A€ a(4)} < Ay.

A ALER LR, WAL
A-r=min{|A\|: A€ o(A)} F Ay :=max{|A\|: A€ d(4)}.

A, ASCR] MRFEUE I s, R e TR R R a1l
L4 A HREFFRIVEEEIE LA [4, p. 6, Definition 2.3].

ch—quasi—norm‘ EN 2. 5MYgE A R F R e s IEé#/I\EIUHUH%ET o: R" — [07 00)7 FE LU S5

(i) o(x) =0 <<= =0, Hr 0 LR R” [
(i) XT1EE 2 € R* F o(Az) = bo(x);
(iii) #74E Ao € [1,00), (X THER 2,y e R*
o(z +y) < Aglo(z) + o(y)]-
LSRR T, 4 A = 2L, WTEE z € R", & o(z) == |z|", ILHT o
5 A HRIFFRTEER — . FEATUR SR, Lk BUEER nox n #4548
M, He | -] 08 R™ g2 s B X2 ) TE 40

XFTREEREE A, B[4, p. 6, Lemma 2.4], ATCE AT ITERL, A8/ Ch T 2R
S

ch-def-shqn | EX 3. EXAE R" 54 A RAIBH F R BEHK p N,

bk if x € Bk+1\Bk,
p(x) =
0 ifx=0,

Hip b 5 (1) —%, TXFEE k€ Z, By 5 (2) —5

89



I (R™, p,dx) /& Coifman FI Weiss [25] & NFFR AR, Hf de o8 n 4k
Lebesgue I FE. % T 5¢ T RAAS IR M 23 0] BB SR IR I B 208 5¢, v 0L (10, 11,
12, 62, 63, 64).

FEARTCH, A SRS 1 IR, 0 5 (1) —2 p RAEE S 3 BB IS
¥, B & (3) HIFTAMAEERNES, 4 (R™) & R™ LA ISEBINES, AT
B ke By 5 (2) —8 BT, FBEkLL Banach B IME L (B [81)).

Y 4. BRI A2 X C o (R™), ERIEHL || - || WA 2 (RY) R, AT
JE LU, BRI A 3840 Banach & 3= 1)

(i) XTERE f e AR, [[flx =0 ATLMFE] f =0 JLFAALRET;
(il) XTAER f.g € A (RY), FHILFALAHL (g < [f], W [lgllx < [[flx;

(iil) XFATE {fmtmen C A(R") H1 f € A (R"), %5 m — oo I, JLFALAAF 0 < fin T f,
M= m — oo B, JLFALEAT ([ fmllx 11 fllxs

(iv) XTAEEM4EEk B € B, A 15 € X.
WeAh, #ERL Banach AR X e LA NS84
(V) MTHEE frge X A If +9llx < 1fllx + llgllx;

(vi) AT RIMGER B € B, (eI A Oy, M TAER f € X A1
/B @) de < Cu 1 fx.

MFRHA 2k Banach & 73 [A].

ik 5. (i) W (97, Remark 2.5(1)] HARik, 2 f € A(R™), M || fllx =0 S5 HMLY f=0
JUTPLEAE ST % fog € A (R?) H f = g JUPRAEHST, T 1| £llx ~ llgllx, Hrhss
NG f A g T%.

(i) 4n [97, Remark 2.5(ii)] FHATik, A ASAEE L 4 HAMEEA AN £ st EER
B(z,r) REMEERIMN4EER B € B, PR EIHE LF

(iii) f [30, Theorem 2], RJAIE X 4 By (ii) F1 (iii) A LAMSEMEEAYERHL Banach pREZS
) #5 /2 SE A Y.

FEToK, [MEERALL Banach AR X A p- A ARG #ES:, AT I [81, Definition
2.6).
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SESL 6. 1% X JEBRY Banach BEUZS[H], p € (0, 00).
(1) X Bp-mit XP EXLH
X? = {f €. MR"): |fI’ € X}
WA B3 [ llxe 1= 1P
(i) AAFLEERA O, X TALE fi € M (RY) 1

Z\fk’
k=1 X

NFRzsiE) X B ek B, 2 C =11, 7k X BA ik,

Mlfllx <C
k=1

25 EFK Banach pREUAS[R] X, HAkr = 8 (WFRITE Kothe sHg = 8) X' @& LW, 2
W [3, Chapter 1, Section 2] @, [81, p.9].

ST, KTAEEER Banach pREZS R X, HAg X =18 X'(HFRA Kothe sH& = 18)) & LK

g€ X, llgllx=1

= {f c MR : | fllx = sup 191l 1 @ny < oo},

FA [ e B 01 llx 948 R84

THid 8. M [81, Proposition 2.3] A4, 77 X s£Ek Banach pREZS[H], WIHAR 23R X
&k Banach pRZ(23A).

IR, B X 4 LT ATI RS (B R G RIFE O, 2, 95, Definition
3.2], FRIZL[RIAYIE I, 2, (99, Definition 6.1]).

B 9. W X 2B Banach sE=SH]. AATAER fe X, 4 {E;}52, &7 gH
WEXNTHER j e NA E; D Ejp UM N2 B =0, HX j — oo |, HflE x40, WFR
fAE X A% EERGLE. WM HXTHES fe X, f 18 X agehEailyess, I
PR X A %5t i 4P e 4.

B3k, Al Hardy—Littlewood MR B HMES. 10 L (R™) 4 R™ LR prA B3R
RE&HHMES. XT f € LL.(R™), Hardy-Littlewood ¥ X HF M(f) HIE SN, X TAEE
z e R™,

M(f)(x) := sup sup ][+B\ z)|dz = sup ][]f )| dz,
y+ By

k€eZ yex+By, reBEB
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Hrp B 5 (3) —#, S5 T EWAEXrE B € B BUSH. X THEES EW
a € (0,00), powered Hardy-Littlewood #. X 55 M@ [ U, MTAFE f € LL (RY)
Mz eR,
MO(f)(@) = IM(F1) (@)}
ARSCETT BN 25 € HI BRI Banach pRUAS )i LAR P EEA R4
ch-aAssum-1| fBi% 10. % X 23kl Banach s¥zsH]. BHEAAAE p— € (0, 00), iS4 TEE p € (0,p-)
Flu € (1,00), FAEIEFE C, AKMT p 71w, (SN TAEE {fili, C Z(R") F

{g\fkru}i

HEE 11. 1% X 23k Banach BECE[A]. RIX M £ X EARH M 1E X' EAR. @il
45 [26, Theorem 4.10] UEWIHRLIRIEIE, REASISE] M FE(EER 10, Hrp p_ = 1.

FERE T RITTE T, MTAERLSEM p- € (0,00), AL

® pi=winfp-.1).

ch-Assum-2 | fBi% 12. % p_ € (0,00), X @¥k#l Banach REZSH]. BIEFLE 6o € (0,p), Hb p
E(G)qjﬁg#%i, #Eﬁﬁ Po € (90700)5 {ﬁf%': X1/90 %Ej‘z Banach &ﬁ%ﬂzﬂa %E‘Xﬁﬂ:/ﬁ:‘%}:\
fe (o) A1

1

{Z M <fk>]“}“

k=1

<C

1 1
Xpr Xp

HM«pO/eO),)(f)H(Xl/eo)/ S CHfH(Xl/GO)')
HoR O RERH, 5 f %, B ly + ol = 1.

B FOK, 1B Schwartz & #p € C(RY) RWELNT R EHIIHREL X TAEE & € Z,
AUER LTS o € 22,

ch-6.11.x1| (7) [llak == sup [p(2)]¥|0%p(2)] < 0.

z€R™

i SR™) AprA Schwartz & &89 %4, T HE {|| - llaktaczn kez, FERIHFL. N
S'(R") €A S(R™) 693448 2 1), W Hg5-« #ifh. XTI N € Zy,

Sn(R") :={p e SR") : [lpllar <1,Jal <N,k <N},
AMTEMRER,
p € Sn(R™)

= [@llsy@n = sup sup max{L, [p(z)]"}0%(z)| < 1.
|a|<N zeR?

ERTRITHET, M THEE ¢ € S(RY) fl k € Z, 4 pr(:) := b Fp(A7k).
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EY 13, ¥ o € S(R™) Fl f € S'(R™). ¥TAERE v € RY, £F o a9 3k ép i K & M, (f)
BESH, W TEE k€Z, y € x+ By,

My(f)(x):=  sup |f*pp(y)l.
k€Z,ycx+ By,
AN, M TAEELEMN N € N, £F N #93kd MR JEMy(f) EXH, MTAEE
z € R,

(8) My(f)(x) := @e?NII()Rn)M“”(f)(m)'
FER3CH, ARCFIN T %1 EEk Campanato BIECAS AN E L. HE(R™) [ F4EAE
T FRIFEFRHIE, 56— SRR IEC AT as . 8257 7 BRI Banach sREAS[H] X MK
(145170 S0t Hardy %3 [A) HE(R™) AOAHEERE. o8 7 BRIECHEERE, Boei M [97) Hhige 2
4 HYR™) Y& L. B PRI, T EEMN o € R, AXH o] £FRAKT a
FY) e R

SEX 14, P A 204, X 2Bk Banach BEZS ], X1 0 < po € (0,00), H/EMIE 10;
xﬁn~/\aq p—; b0 € (0,p), F po & (b0, 00), WAL 12, Hoprp 5(6) 2. Bk

9) NeNﬂH(l 1) b J+2,oo>.

0o In(A_)

N5 ARl X HXI &6 ik Hardy 20 HE (R™) 530K
HY y(R") = {f € S'(R"): [ Mn(f)|x < oo},
Hrp My (f) 5(8)—8 W4, FTAER f € Hy y(R™), &L
1Al ey = 1M ()] x -

WA BMEE, X 2 L 14 HRYERIY Banach pRELZS A, FEJ53CH, 4

1 1
(10) Nyoaim K‘Q nb J+2.

0o In(A_)

g 15, (i) fn [97, Remark 2.17(1)] Hffik, HE N € NN [Nx, 4,00), &[0 HY y(R™)
S5 N HERICK. (e TRMITIET, 2 N € NN[Nx, 4, 00) I, A3CH HE v (R")
50 Hy (R").

() 25 A =2 Ly, Wl HA(R™) 15 Sawano % A7E [81] HI5|AMY Hx (R") —3L,
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FERE R SRIGTHE T, W TR d € Zy, Pa(R™) F£om R™ EFrARBAKT d 2T
L X TAEEEK B € B HULESE A FERE g /£ R b, ASCH Plg F% g (4 %
R X, HIRBAKT d, %78 Pig 2 Pa(R™) FhME—2 05 f, (55X TAEE b € Pa(R™),

/ [9(z) — f(2)]h(z) dx = 0.
B

N, ARG BRI, Banach pRECAS [ FHRH) & A 58K Campanato PRECASH]. (T
SRETREH, M L, (R™) o8 R™ _LHIPTA g e 30 7T R & R RS

EX 16. % A 245, X 2Bk Banach uéﬁ( Slal, g € [1,00),d € Zy, s € (0,00). N5
AMX *H?%E’J%ﬁ%liﬁﬂ Campanato &% Z 8 Ly 4 (R™) & SCHFTA T AR
fe Ll (R") MEE:

11—1

{Zm:[ i rl }
| pwlx] B
X
\j|B ])’
Z “ 150)[1x |:]€3’(J')

Her EHFAERA m e N, {BOY, C BH {\}7,; C (0,00) FHIE

[cn-sor2] {0 17. # Av X, ¢ d fl s &L 16—

(i) Ezliﬁﬁﬁzﬂﬁxlx H{El 1[||1 ()Hx] B(i)}%”)_(l € (0,00), MIAT LK E L 16 HHT m

(i) A, Pa(R") C Eﬁ‘chs(R”) bR L 1fllea ) = 0 HEME f € Pa(R™). 12
A, ASRREHEA [ e L5 ,q4.RY) 5 {[F+P: PePar)} B

(iil) XFAEE f € LL . (R™), iEX

Hf”ag‘( a5 (R7) 7= SUP

i) = Pl )| |

11—1

{i [HlB):j)HX]SlB(i)}S X
Z ul50 L[ it - P ai]

Mo llx

£l 24

4o R)::supinf

Hrp EHARBGE S E L 16 —2, THARE A P € Pa(R"). 285, AT [100,
Lemma 2.5] BJIERH, 515 ||| - H’EA (B e Equs(Rn) BN PLTEER.

A, 3T 1R Rk Campanato BEUZSH] L, 4 (R™), AR SCH AT S0 ITEAL.
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il 18. % A X, g d Al s HREX 16— TR f e LL . (R"), EX

-1

1
)\Z S s
{Z [nlenx] B“}
X

TR

HleHX

HfHﬁ?(,q,d,s(R") ‘= sup

f(x) - Pémf(x)\q dﬂﬁ} ! ;

Hep EAAE {BYY jen € B I {Aj}jen C (0,00), R LA T 44+

1

(1) S g | €00
e 110 llx
X
[ ERPEAS. W, SR fe LLR™) A
Fles , am=Illcs,, @

FHEASE AT — 55k Banach FEZ] X HISCHA 7 Rk 9Bk Campanato
B zf;‘( AR,

EX 19, B A RGE, X JZER Banach BFEZE), ¢ € [1,00), d € Zy. W5 A I X 4T
FHIRAY Campanato FIR LY, (R E SR IR TSR f e L (RY) IS

£l oy = s o2 f (@) = Pas)[ o} < o,
Horp R FRIBAERT A 455k B € B UG, PRf For [ FIRENKT d /23t
D 20. B A X\ g d il s HEXL 16 2L
(i) MUES 16 F1 19 AISZHIFGE], L4 4 (R™) C L5 o(R™), HIELERES.
(i) X f € LL (RY), :EX

1
in | B q
H‘f’”ﬁf‘ L.a(B™) = SUD |f x)|Tdx| .

Ber PP R” 115l x
Wi, 20T [100, Lemma 2.6], A7 ||« [llza  mn) 2 L% 0 a(R™) B—A M IEAL
TEURAEAR SR AR AN S 5L
IH 21. 1% {ai}ien C [0,00). # « € [1,00), N
(Z ai> > Zaf‘.
€N €N
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PRl ], #575k 4, Banach si%0as10) X 2 MY, JRH s € (0,1], W £, 4 (R") 5
TERE Y19 HIBINEY Ly, q(R™) A

i 22, 1% X 22— HEYER-AL Banach pREZS

ch-2.15.x3] (12) LY 4as(R") = L5, 4(R™)
H B ENTHAFM AR

B TR, ARSOKBENT Ly, 0,(RY) FTHR(R™) ZIRIXHEC R, S, EoERE Tk
H [97] BYRE X, RISERL Banach AL X MHRHIA SR (X, ¢, d) TP BR)E T

Hardy <[] Hy'%a (R™).

SiE], g € [1,00), d € Zy, s € (0,1]. HHHA

EX 23, 1% A ZMYE, X 2Bk Banach s 1], WE % 10, Hr p_ € (0,00); BAK
Bk 12, /H\EP p—, 6o € (0,p) po € (6p,00), p H(6)F—2. %k N € NN [Nx, 4,00), HH

Nx, 4 5(10)h—3 BE—25{8i% ¢ € (max{po, 1}, 0], H.

(13) te || (-1 mos | ) e
0
(i) &@fiE (X, q,d) BT a2 R ERIAUEREL 2 LU0

(i); supp a:={x € R": a(x) #0} C B, Hft B e B, B 5(3)f—%;

1o
(D)2 llallpaeny < [Bl7[1a]%"

(i)s RHERE 7 € 22, Hrh || < d, #5H [ alz)a? do = 0, HA B JG3CH, XHER
vy={n o m €LY, W i=m w27 =]

(ii) 5 A X MK &6 St A R F Hardy 2 B Hy e (RY), ESCRFTE f € S'(R™),

WA K e N, —3) (NS € (0,00), LAE—FI5284E {BOYE, C B thifi
Bt (X, q,d) FEFA) {a;} K, 15
K
f= 2&'&1
=1
IS, AN, THMER f € H}? R, E L
T Mge 1)
{; [HlBu)HX]
HA R U AE LIRS i B A S .
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WA RgE, X H5E 23 —8L F30, 4
14 dxai=| (g 1) i
chdzal (14) xa= (&) mos )

SN HG(R™) (X e, A ST S H T AERA R TR~ S 15 B2
[97, Theorem 4.2 and Lemma 7.2] f1 [97, Theorem 5.4] FJfa] B4 1L.

SIE 24. 1% A X\ g d fl 60 HEX 23 8L BRI X R AESIIE
B, {ajljen B—AIXESBEMAEER {BUYjen C B K FHE (X, g, d)-J 41,
{)‘j}jEN C (Oa OO), H{%E

1
NP °
]
2 [Hl mux] BY
JEN B

NI f =Y en Moy 1E HER™) s, f e HER™), HEE—AS f IERMIETRE

C, {15
1
N 1% o
Z[ ’ ] 1z0)
i Upwlx

< 00.

X

1l kg ny < €

X

JHAL-

(i) # q € (max{po, 1},00), M || - HH;yqf;g(Rn) R Mg ey 72 H?j%’ﬁ (R™) _EREN
PIEEL;

() 1 gty B 1 g ey 18 e (R NCR™) _ERSHRETRL, Helt C(R™)
o BV TR S

FESL X EFIA T B LA 2538

0l 26, 1 AL X Fld S57EN 23— WA HAEU R NCRY) £ HYR™) e

1.
TR HERY) QXHBZER £4 46 RY).

P27, % A X\ g d F 00 SN 23 —F BE B {BI% X BALRELETEEL N
H(R™) (XA, 300 (HR(R™)* AELA P ESC MR L] g a0, (R, HA 1/g+1/¢ = 1:
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() g€ LYy a0RY). WXHER f € Hybn (R"), EXTF Hy'ha (R") iz

(15) Ly: f= Ly(f) = | fla)g(a)de
f£ Hg (R™) _FAA FAEH.
(i) B, X HR(R™) ERMERESLNIETZ B, MM g € LK 4 40, (R™),
Hugorh (15).
Wb Ngllea o @ny ~ ILgll (g myy-» HARFHEELS g Tox.

,a’,d, 0

VEOERE 27 HfEIR, AT LA R #5530 ER Campanato PRELZS [H] A SR

e 28. # A X, d. 0 I po HER 27—, H po € (0,1) B} g € [1,00), 5524
po € [1,00) I g € [1,pp). N

EI)A(deX,AﬂO (Rn) = ‘C’I)L‘(,q,d,eo (Rn)
FERA N RIEE, Hr dx a 5 (14) —2

ch-3.24.x1| 7Hid 29. (1) & A:=2 @ xn, WHEM 27 FHEL 28 230 HIFE [103, Theorem 3.14 F] Corol-
lary 3.15) #1155

(ii) T, Yan 2 AFE [99, Theorem 6.6] H155] T 545 ERI5F A 25 8] X _EAJERHL Banach
PRE A ) Y (X) ORIy Hardy 23[A] Hy (X) BOEER. F2 g, hT— B
A X HREEL LS 1, RILTCEAE & E5| N\ Schwartz pRECRIZ 0. SLhr |,
18 [99] H, A A0 A R E R, e 27 TR I EA T, HEL
Hd e ldx, a,00) NN, H dx 4 5 (14) —Z KHi, R (R™, p, dr) 22— PF=
6], R 27 AREH [99, Theorem 6.6] #EF ik, SEbr b, BATEACLEXTJT.

T HY(R™) B4 50k Littlewood—Paley b #(4#4F J Fourier
3
ch-radialM| EX 30. % ¢ € SR") H f € S(R"). MTHEZE xR, EX fRT o WEAFHES

MR HMO(f) H:
MO(f)(x) := sup |f * pp(z)].

kEZ

AR, X TAERLER N €N, EL f € S'(R") (& & Rz d K& BMY(f) A

MR (f)(x) := s )Mo(f)( x).
pesSn (R™
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Bk, NTHEE ¢ € SRY), ALENL ¢ A4:
e o
26 = [ el
Hp o= v-1 AT EE 2 = (z1,...,20), & = (&1,..., &) ERY, - &= 30 @& Kt
THER [ € S'(RY), [ 5E3Lh:
(F,0) = (£, 9),
$rb € SR,

AR ¢ € SRY), f*dp — 0 £ S'(R?) HEEE k — oo, MFK f € S'(R") ££7C
GRHEAL A K & (B, [36, p.50]). 4 Co°(RM) Ffe RY LA H5fl) 657 T BER sy 42
fi. LAY Calderon F2E v Sk HF [7, Proposition 2.14].

SIBE 8L, 1 d e Z, A RIG. B 6 € CRR) WHIELLT &0

(16) supp ¢ C By; /R 2p(x) dr = 0 M TAER v € Z% B |y| < difor

EAAETERR C (8578
(17) Y ee{zeR": (A7 < p(x) < 11, H|E)| 2 C

WAFFE— o € S (R™) Wi L LA T 46
(i) supp ¢ &S0 FLIE B B
(i) ¥FIEE ¢ € RM{0} 4
Sa(aye)e(aye) =1,
JE€Z
b A* SR A HRERE .
HeSh, WTATTE f € 8" (R™), 45 f (ETCo7mALSg 4, I
F= fruyxe; £ S (R") fkar.
JEZL
DR 2417 54 Lusin BRIES. %75 Littlewood-Paley g BR¥L. 4% 1tk
Littlewood-Paley g(f) R E Lo IXEERE L H [76, Definition 2.6] 5[k,

X 32 1 6 € S(R") 57317 31 —E XTAER £ € SR RHUEM A € (0,00),
N & @ P Lusin @A &4k S(f), &@ M Littlewood—Paley g-F 4k g(f), LA & & F1E
Littlewood—Paley g}- % &1 T

1
2

(18) S(f)(x) = [Eb—’“ / |f * or(y) [ dy] :

kcZ 2+ By,
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-

(19) 9(f) (@) == ermk(xﬂ?] ,
LkeZ
deaglambda] (20) Gi(f)() = Ze-%kkrf*w)\?] .
LkeZ

AL E L & R S Lusin ALEEE &R S0k Littlewood-Paley g- B 50R145 1f] bk
Littlewood-Paley g}-rRECKZIH H )“} (R™).

SEBE 33. 3 A R4, X BRI Banach B%Zs[H], X 0 < p— € (0,00), WML 10;
YT R~ p-, 0o € (0,p), 1 po € (6o, 00), Wi % 12, Hrp p 5(6)—2; 5 HALY
feS®RY), fAERFTITATIHE, HH 1S(f)lx < oo B, f € HER™). Muhh, JTER
feHE®RY) K

1SCHIIx ~ HfHHQ(Rn)a
RSy f ek

SEHN 34. B AR X SEE 33 —EL WM HEMY f e S'(RY), f AETLormmgsnsk, HH
lg(f)llx < oo B, f € HER™). Hhh MTAEE fe HERY) A

LN x ~ Il s gy
HpFhHE8S f ik

AN, FHETE 33 FIEHE 34, LARELT (17, Theorem 4.11] Hhfdi FH[IE B /738, Shfs
PUREEER.

EBE 35, ¥ Av X Rl 6 5iEH 33 —3, A € (max{1,2/r}},00), Hrf
ch-3.25.x1]| (21) ry :=sup{fp € (0,00) : {FLE po € (6o, 00) (15X i BARIK 12 }.

MR EAY f e S'(RY), fAETCSF ARSI, HH g5(F)llx < oo I, f € HER™). I,
N, WFAERE f € HE(R™) A

W3 (DIx ~ 1l ey
HpSE RS | Tk

AT UEMERE 33, ASCESEHRH LA NS S, BEWA 751 31 AR ¢ E XS
[ 5P Lusin EAEREY || - || x SHEEEEN.
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ch-defdya

R 36. 1 AN X HEH 33—, ¢, € C(R™) FiL (16) A0 (17). WX FAEEAETT
FIILALESIHER) f e S'(R™) A
196 ()llx ~ 156 ()l x
Hrr Su(f) 5 (18) —2k, Sy(f) 5 (18) Hl ¢ By o, FHEME LS f Tk
HTAERAERE 36, ASCTRZELLUN 53, B2KIET (19, Theorem 11] Y [7, Lemma2.3].
518 37. % A 2 ge, WAAAE—HITF5
Q= {Q’;CR“: keZ,aEIk},
Hrr I, BARPREE, W2 LUT 40
(1) MTEPMEER kA R\ U, Q4 =0, FHXMTER a # 8 6 Q4N Q% = 0;
(il) RFTATE o, Bk, 6,35 0>k, U Q5N Q5 =05 QY C QF;
(i) XFFEA (€,8) Fl k < €, FEAEME—1 o {5 Q4 C Qk;

(iV) FAEREAN B v ?ﬂf’:%&ﬁ Uu, SMFEE EkeZ Ml ac I, 11 Tk c QZ, %t
TR e
Tk + Buk—u C Qs C @+ Buktu

BEROR, A ER I, ASCHREIEE 37 T Q := {QX brezaer, N =it F K, I k FK
HHETTR QE &, TR ((QF).
AN I BORIES [BEH 2 0, E2 [47, Lemma 6.9).
5|3 38. % d Y5 (13) —%, v fl v 553 37(iv) —2L,
Inb
e <1nb+(d+ Dina

MAAEIERHE C, W TFAER ki € Z, {cQ}geg C [0,00) (Hrh Q H5[H 37 i—30), LUK
reR"

pkVi)(d+1) o

Z Q| WA CQ

@=Tizx] VD + pla — 2)) D e

< cp~ = 0vIIG -1 {M{ 3 (CQ)MQ] (a:)} :
1

UQ)=[*3
Hep /(Q) F8 Q W2, 2g € Q, WTEE ki € Z, k Vi :=max{k,i}.
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TRk, A — N S5 4E A FHREE A S Muckenhoupt AR AE X, %€
MAE [6, Definition 2.4] Hh5| \.

EX 39. K A BMYE, p e [1,00), w2 R™ ERIERATIREL WeRE w RN & & 7+
e Muckenhoupt BOF e, FAFAEIEREE C, 2 pe (1,00) BT

1 p—1
sup sup{f w(y)dy} {f fw(y)] 7 dy} <c
zeR" keZ z+ By, z+By,

o, Hp=1M%a

sup sup {][ w(y) dy} ess sup [w(y)] 'y <C.
xER™ kEZ z+ By, yEx+ By

WAL S5 P10 #1521 Muckenhoupt SUBECEHIZIN Ap(A) i= Ap(RY, A). BAb, LIEZRIT
THHR/NEE C ek Cp,Ajn( ).

BB, %1 < p < q < oo, M Ap(A) C Ag(A). 4 Aso(A) = Uyepr.oe) Ag(A)- 1t
THERLEN w € Axo(A), XL w Bl RIEAR qw H:

(22) quw :=inf{p e [1,00): we A,(A)}.

AR, qu € [1,00). H¥ Holder AZE (200, #l, [50, Theorem 1.2]) 15 H, X THEE
€ (1,00) fl w € A,(A), FE e € (0,p—1] A w € A,_(A). HI, & qw € (1,00),
M w ¢ Ag, (A). 5, Johnson F1 Neugebauer [54, p.254] Z5H T —"l 1, A := 2L,xn,
w ¢ Ar(A), gy = 1.
X FAEEAR YR AT AR w FIMEE Lebesgue AIIIEE B, 4

XTAERLER p € (0,00), 1T L (R™) A Tal @& f /£ R" LRSS, WL

1

iz ={ [ 1r@Puae}” <o

b, 4 Loy (R™) := L®(R™). AR, Liw(R") 2K Banach eELZS[A], T8 HAZEM
Banach PRELZS ] (2, i, (81, p. 86]).

AT UERERE 33, ARSCHFELLFJLMEORTEE. BN (R™, p, do) J&—DREFRIN TR A
], 5|7 40 /& [99, Lemma 4.9] (1720, [82, (4.6)]) MIEIEAEL, B1FE 41 5 [4, p.21
Theorem 4.5] 210,

5B 40. %L Av X M1 0o 5EH 33 —2 2o € R™. f7fE—1 e € (0,1), flif5 X BELRA
) L (R™) H, HH w = [M(Ly048,)]%, Bo AN (2) Bk = 0 (1.
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BIEE 41. A Fl X S7EHL 33 —5, A7 HE(RY) C S'(R™), Higba % RS,

Z54r 5|3 40 AI5IHL 41, WTLMEE] T HE(R™) AL

SIH 42, W AR X 5EH 33—, f € HY(R"), [ $TH AL

N T UEBTER 33, ASCATH LT 5, HAEW]S [69, Lemma 4.2] ZE1{LL.

BIBE 43. 3 A X+ 6o Ml po S5ERE 33 5L, g € (max{po, 1}, 00], ko € Z, £ € (0,00). {H

ch-3.24.x3

B {\i}ien C [0,00), {BD}ien C B, LR {m® Yien € LIR™) 2, ¥ TAEHE € € (0,00)
MieN,

7

supp m(® = {:17 cR": mz(-s) % 0} C AkOB(i),

|BOa
(e) 4
m, ny < ,
Rt v e
i
1
{Z[ Ailpa) ro}% <
0.

4 1o x

2 o .
it

<C

0] %
lim inf Z )\imgs)
ieN

e—0t

1
> [een] )

.  Upollx
Hep ¢ 25 A BOL m® Al e BRI TR

Hic 44. (1) & A = 2L, WEM 33. 34 F1 35 /2 [17, Theorems 4.9, 4.11, and
4.13] (A= [81, Theorem 3.21] f1 [95, Theorem 2.10]) 15%I[1.

X

(if) EInfETEID 29() FHEEIRIAREE, KT (R™, p, dz) 25705 A, B2 33+ 34 135 A
AEM [98, Theorems 4.11, 5.1, and 5.3] Hhifeth, SEbn L, EATAREMH E AL

NIE, ASCHESE f € Hi(R™) [ Fourier 284, [EIifi— T, XL ¢ € S(R™), B
Fourier Z#, ith F (@) 8¢ @, &SN, XTAER £ € R,

FRO =0 = [ ) da,

WAL R CH, 0 o= V=1, XTFAER = (21,...,20),& = (&1,...,&) € R, x- & =
S il RFATEE f € SR, FEH, MFEE ¢ € SRY), (f,9) = (f,?); [,
TR f € SRY)[EL S'(R™)], fV F£nH Fourier # 3, E N, XTEE £ € RY,
FYE) = F—O)[EBERFALE ¢ € S®R™), (fY, ) = (f,0")].

FF f e HE(R™) [y Fourier 48, A H1F 45 5.
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S 45. 1 A R4, % A 24E, X 2Bk Banach HEEH, X 0 < p- € (0,00),
TR 10; X TR~ po, 6o € (0,p), Fl po € (6o, 00), MR 12, Hr p 5(6)—

2 H— B BOAAE qo € [0o, 1] (H15:
() ST TR (), A

(23) i”fknquo S
AL B BV IEF RS {fe}ie, TR
(ii) *MLE B € B, Hrh Bt (3) EX, A
(24) I15]x 2 min {|BJi, |B[% },
WS AL B T
NWIAHMER f € HE(R™), 7€ R" LRGESEE F 15

ch-6.10.x3] (25) f=F in S'[R"Y

HEAEIEFR C, U T A X, I e R

11 L1

)

X 20

> f
k=1

(26) IP(2)] < Cllfll g ey max { [ou (@) [pela)] 7o
Bt po FEN 3 B, 5 HPH) A B B AT,

ch-c3s2rel| JEid 46. (1) #5 A :=2L,xn, NEH 45 7] LILE [46, Theorem 2.1] & 3.
M AE

(i) *HMERLER IS B C R™ AL ER] p € (0,00), Lebesgue = 1A LP(E) |

JoNEH

1/p
o1 )= {1 B ks o = [ [ 15@par] <o)

ik A 24, p € (0,1), LA
1 Inb
NeNn H(p _ 1) ln()\_)J +2,oo) |

1 (99, Remarks 2.7(i) and 4.21(i)], fEfEASH LP(R™) W2 E X 14 B FraE %, Hp
X = LP(R™), p— € (0,p], 6o € (0,p-), LLL po € (p,00). ILAF, BL qo € (p,1]. 1RYF
(27), MAEEIEATTIR AL {fr}oe, FEE BB A

kZ:1 ||fk||L%(Rn) <D

k=1
104
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AR 1 1 1
18]l ey = 1BI7 > min { Bl | Bl } .
R, LP(R™) W2 EHE 45 rA R, Hd X = LP(R"). fEXFMELL N, EHE 45
A LIFE [9, Theorem 1] k3.
(ifi) 40 [46, Remark 2.1(ii)] FHRZIAREE, (26) BEWKEHEL f € HARY) N LY(R™) B4
—MERHE. RAEFEFPREE B T LR B T S R Y b

ST UEWIETL 45, ASCTEEMOE LIS TR 1 A RIGE. ENET Da h, WHE
= fe#(RY),
Da(f)() = f(A).

W —MEARIE (29, 3.1)]), fEEIMIMERE k € Z, f € L'(R™), LIk = € R”
i
(28) Jlw) =v* (Dhe (7 (P4r))) (@)

BTOR, B A SRR T Hardy 25 [RIBYRE L, X2AE [97, Definition 4.2] HrE 5]
K.

X 47 B A, X, 60 Bl po S5 14— BB g € (max{po, 1}, 00] H

o[-0ty

SRR T Hordy %R HESGE (R ESUCAFTAMEL &R [ e S'(R™) [k
FEAE—H] {\j}jen C C RI—FISZHAE {B7}jen € B RS S (X, ¢, d)-FT {a;}jen,
WHLAE S'(R) i

f = Z)\jaj,
jeN
HHAE )
Z [P‘j‘lBﬂ' ro ! < o0.
a Lsllx
X

ESE, RHER € Hyho, (R™), &

I e, oy = 10

(el
a Lsllx
X

HAW i FURAERT A LR i U

105



TR HE(R") (9JFFHRRE, 152 [97, Theorem 4.3] 15 311).

Bl 48. % A, X, q Fl d 55347 50 W HE(R™) = Hy%? (R"), HEGSML
TEHL.

WL ZRALT [9, Lemma 4] thl I RGIEIE, SZRGE LU R 4518,

BIBE 49. & A, X, ¢ M1 d 5N AT 5, a 2 3AE w0+ By, LS RE (X, q,d)-
JFiF, Hr 2 € R, ip € Z. WAFAEIERE C, (FMEERE o] <d 1Y a € 20 FHEE
reR" G

ch-5.30.x2] (30) 0 (ﬁ (fofa)) (.CU)) <C HlBio H;l min {1, |x]d_|°‘|+1} ,
HpE8 C 5 a Bk,

FIHSIEE 49, ATLMSE] TSRS (X, ¢, d)- 7B — B, XAe e 45 AIEi
S SRR A

513 50. ¥ A. X\ g d fl 6 H55E X AT—50 B X L (24), H g0 € [6o,1].
NIFFAEIERE C, AMERS AR (X, ¢, d)-JiT o IER 2 € R A

(31) a@)| < Cmax { [pu (@), [pe(@)) 1}
Hrp p, HEH 45 th—E
317 50 [HEMFEL T A%, &2 [4, p. 11, Lemma 3.2].

BIBE 51. 3 A JLGE. WA C, /IR « e RY

Sl < fa] < Clp()]"O0/ p(a) e (1,00)

LUK .
Glp@)ARR < < Clp(a)A 0 p(a) € [0,1].

G352 hAEERE 45 ALl Al

B8 52, % A. X fl 6 5& N 478 FHF—HHIE X WE (23), H o € [0, 1]. WIFE
TEIERH C, AHEE {(Nitien CC H1 {BDYey € B A

1
oy
Z[P\iﬂg(i)] o
= Lpollx
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VEREFE 45 BN, ARSCH S 78 EE 53 theh M eRE F A8 F B B m i
WSkt S8J5, ASCK Hardy-Littlewood ANZEAYJEH] 55k Banach RS [ AH I %
5t Hardy =X [RIBYENL (S WEHE 54).

P 53. 1 Ay X\ qo Il pe WIZERE 45 —50 WXFTAEMT f € HER™), #f77E R LY
ELLRREL F, 7545 S'(R™) i f = F, 3:H

(32 e
=0 o, ()]0~
VEERL 45 17— DN H, ASCH Hardy-Littlewood AEEAH JE#] 5Bkl Banach
PRI S [RIAH OC 9 5 1) ek Hardy 25 [RIF IS BL 0.

SEPE 54, % A, X, 0o Fl qo MZERE 45 —%0 MAMTRE f € HARY), #4745 RY LR
S F, 13 S'(RY) i f=F, 3H

1

I O (A e e ) e B e vy
$afr O AU AR X AXERR

Hid 55, (1) 5 A = 21un, WZEM 53 FIEH 54 5r5I4E [46, Theorems 2.2 and 2.3]
HfRE].

(i) % A 245, p € (0,1). it Remark 46(i0), LP(R") W/LAEH 53 AUEEE 54 G
A, i X = LP(R™). fEXFEN T, 3 53 FIEH 54 70 5I7E [9, Corollaries
6 and 8] H1153.

S0 L4 (RY) ISP RHE

AEAHT, RPRE S5 — 4 s B R, ACCEE Sy T 4 1A PEBR Campanato i
BT L4 g0 (RY) HTERCE AL XA L4 400 (R) ) Carleson JUlHEZImi i

HEB{EH.
SEFL 56, W A X v d Fl 6 S 28 — B FFEMTHA s € (0,60) B
Inb [2 In(A;)
(34) ce (i 2+ o] o).

I EAF BRI 2 4
() f € L% g.a0,(R"):
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(i) fe€ L (R") IFH

-1

90 0o
B legs,, w = i) e,
- ( ) HfHEdee { Hlx 1B, HX> i+ ll}

m

Z JU]—i-Bl

1 :BJ+BZ ||X

X

) / B f (@) — P, F(@)

bl [1+51 fAb ) + [plz — z; )]1+ lnf:;)

dx

< 00,
Hep EHFUR A m e N, {z; + B}, C B, {z;}7L, C R™, {l;}T, C Z, LAK
{Ai}21 € (0, 00) HUf.
AN, RHERL f € L, (R™),
1f1lza

Soam @) ~ legs @

HpB MRS f ok
AT UEWIRERE 56, A SCHF LT HARNES I, 12 fRAS i Lo, 48,40 < 0 M(Layis,,)
FLAE T A9
518 57. B X 2 BRIl Banach RECEH], LMK 10, Hh po € (0,00), B2

ik ¢ € Zy, s € (0,min{p_,1}), WIFLEIERE C, 5 ¢ F1 s #ICK, HIGEETF
{z;}jen CR™ FUEEFF {kj}jen CZ B

lej+Bkj+é
jEN
Hep, SHER jeN, By, 5 (2) —E

ASGET LR L 4.0, R™) BIA—AZANZIE, 0F AR, HIEW R3S 56 (14
(DeCe

SEPE 58, % Av X. qv do 0o Fl € 5EHE 56—, NI 56 FULIEAE m B oo HY
T ISR, SO R RLRRT {25+ By, ben C B, {asbiens (s dyems A1 Dy en W/

< Cb+

E 1.
T +Bkj

jeN

X X

1

Noo)” "
Z ey ]-x]‘+Bl . S (O) OO)
2\ s T )

X

H AR
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HEID 59. & A = 21, WEFL 56 FIEM 58 433178 [103, Theorems 4.1 and 4.4] H175
.

PRI LA S BN SE R, RSN 1 & 2Bk Campanato BEZSH] L% 44, (R™)
[ Carleson JEEZIHE. Aitt, ACEEFIANLLT &@ F X-Carleson 9 B

EX 60. 1% A JZM4gE, X 2Bk Banach BRE(ZS[H], s € (0,00). R™ x Z _EfJ— Borel
MR dp ijkh%té X —Carleson M &, 75 22 LAR 414

11—1

Mgl 12
i—1 B IX X

Xfﬁ*ﬁww[ﬁsmewF}

BGU)

A EH R m € N, {BUYL, C B, u/;z (N1 € (0,00) BUEHY, XFTAE
9 j € {L,...,m}, BO %75 BY) Lk

—

ch-hatB] (36) BU) = {(y, K)ER"XZ: y+ By C B(j)}_

XTIt X—Carleson &, ASCH LA TS0 2 1H.

ch-s5p1 | iyl 61. % A Ef4E, X 2Bkl Banach pRE(ZS[A], dp & R™ x Z FHY Borel |,
€ (0,00), %

I
»

1—1

Z |: Az :|sl s
ICENT @)
polx] «
. 1
)\j‘B(J)‘% [/ r
x MIBTIR Az, ,
Z{ Iporlx e 144

jeN

A
]l ™ := sup

Hhg st {BYYen € B H1 {\;}jen C (0,00) i

1
)\’L S s
AR T
{Z [HleHJ B()} ©
€N X

FA RIS, 0 (|dul| 4 = dull 2.

(0, 00).
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PRk, ST EESEN keZ, EX
1 Y4 5=k,
0x(j) == ’
0 Hj#k.
KT Carleson I B 21 (] {1 =2 @ FRAN R .

B 62. UL A, X, d Al 0y 5 23 3L, po € (60,2), ¢ € S(R™) EHL(16)F1(L7)
F S5 LR

(i) # h € LK1 g9, R™), WHTAER (2, k) € R"XZ, du(a, k) == Y yeq |pexh(x)[*da o(k)
52 R x Z _EfJ—4 X—Carleson M ; AN fFE—A5 h TCRIJIERE C, 15

ldull® < ClIh] 24

X,1,d,00 (R™)

(i) #F h € LE (R™), HXTMEE (2,k) € R™ X Z, du(z, k) := 3 ey |0 * h(z)|*dz 6, (k)
& R"<Z ERJ—4 X-Carleson Jl|JE, N h € [’Xl 60 (R™), FFH, WA FFE—Y
h JTERIIERH C, 415

Ihleq, 0 @ < Clldpulx™
WEIT 63, () TERE, & X 2 MIEkI Banach BBz, Arill 22, EFE 62 4 T

Eé{,l,d(R ) EI/J Carleson %)) 1.
(i) # A =2 L, MEFE 62 475 [103, Theorem 5.3] Fi{551.

N TIERTER 62, 75 B BRIl Banach pR#CAS [AIAH SR & 1) S PE o 2 ) 2 LR 1~
fift. ASCE SR B &

ch-defcone| &S 64. I A FH4E, ¥ TR v e R", 4
I(z) ={(y,k) e R" XZ: y € x + By},
MET EHN e R, L4201 4
1% o € (0,00). HFAERAMEL F: R xZ - C fll € R", XL
>

[Zb g Flu.0f dy|

(€T {yeR™: (y,0)eT'(z)}
Hrir T(z) H5EX 64 —3 4
HF”T;‘vP(Ran) = HJZ{(F)HLP(R”) < 00,
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TFRATIEHRE F BT 2% Fik ik £ % 00 Ty (R x Z), 2 p € (0,00). X452 1R
Banach H¥CZ5[A X, &6k Xtk % 8 TAR" x Z) & SUNFTETE R x Z F, e
o/ (F) € X WymTIEE F (940, 31 H 8 IR A 155

1E Nl pa@nxzy = 19/ (F)l|x
BT RS A L R (T, p)- ST 3L
EY 65. % p € (1,00), A MG, X &4 -Hkitl Banach MALZS . #{7(EBk B C B, i

+
(i) supp a:={(z,k) €R* X Z: a(z,k) # 0} C B, Hrh B g (36) fiffy BY) #iah B.
() llallpaognyzy < 1BIYP/I15]lx-

MR ERET @ » R XZ — CHARA— & @1 (Tx,p)-RF. WA EXHEE p € (1, 00),
a H A tE (Tx, p)-JE5, WA a & @t (T, 00)-RF.

ATLASE) AT 6T 410 5 X-tk 25 ia) T (R™ x Z) W15

5IEL 66. ¥ A, X Fl 6 SEX 23 5, F: R"xZ — C & ulllHk # F €
TR(R™ x Z), WEFAE—F] {Nj}jen C [0,00), =8 {BW}jen C B, LA 55 RIS HEAE
{BO)}jen L& IFIE (Tx, 00)- T {Aj}jen, X TILPALLN (2,k) € R" x Z 4

k)= NAj(a k), |F(z, k) = ) Al A, k)]

jEN JEN
IEH
1
%
A\
(37) Z( oo lx > Lao S IFllrg enz):
N H B(J)HX
X

HA & RS F k.

O~ Bk N H

FEX—F 1, ARSCEER 27, 334 34, 35+ 45+ 53+ 54. 56. 58 F1 62 L5 28 r)fﬁ
ﬁAE{ZKEﬁ}jEU Banach pR%(z5[a], 3752 Morrey %z5[A]. Orlicz-slice %5[A]. Lorentz %5

[EI g#r Lebesgue Z5[A]. JRGT0EL Lebesgue Z3[8]. JIAL Lebesgue Z5[A]F] Orlicz %3 [H].
fF%J'Jf@ ATCEA R HOERE 454 53 T 54 ANRER AT Morrey 28], B2 HFEH = M.
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s Morrey i
22 i) Morrey 28 [] MY (R™), Hrh 0 < ¢ < p < oo, H 41 Morrey £ 1938 5]\,
SEVAR AT R T R e B R, W5, FEARRES R LSRR Morrey 23 A #
TR SR (20, filln, (18, 83]).

SESL 67, % A B4, 0 < g <p < oo &afkk Morrey % MM ,(R") 7K R™ L)
A AT f, 2

11
£ llaep ey == sup |[Bl7 [ fl[La(m) | < o0
’ BeB

M4, 2 B 5 (3) i3k

BOUEN], M 4 (R™) ZIRHL Banach BRELASH.  HMGA] [97, Remark 8.4], 135
M, (R") SEEIE 10 71 12, 3 X = M? ,(RY), p_ € (0, 6 € (0,p), 10 € (p,00),
p = min{p_,1}. {EEFRMNAET, ALERS HM] ,(R") F£ox& @Rk Hardy-
Morrey =18, BHIE X SE L 14 H—3, X = MgA(Rn)- W ER 33+ 34 f1 35, A
LIS T HMQA(R”) 25 R S Lusin [EFREREL. & A 554 Littlewood-Paley g pRECH]
# A S Littlewood—Paley g3 BREZIH].

SEBE 68. 1 A JZM4H, 0 < g < p < oo MZEHE 33, 34 f1 35 % X := M} ,(R") Fl
A € (2/min{1, ¢}, 00) A7
ch-3.23.x1] Vi 69. (i) EH 68 E2HN.
(i) JEHE 27, 56+ 58 M1 62 LR HEE 28 NREMH] T 417 554k Morrey 25 [A] MY 4 (R™),
MY 4 (R™) HTERERZ M.

AR, MQA(R") AREANE qo-MIHY. SEbr b, 1% A i=21hxn, 0 < ¢ < p <00, g € (p,1].
B {fetpsy /2 [41, (24)] h—ZRHEREUTS, I ¢ .= L, p = B Tk @ 5 [41,
Theorem 2.15] Hh—3§, A[15

o (o]

= ||®(a D ~ |la|lje =1 < P = 00,
S|, =@l g~ =1 <A g
k=1 M? (R™) 5 k=1 a5

Hrfra:=(1,...) €1 XU, M7 (R™) A2 qo-MA. Flitk, EHE 45, 53 H1 54 AFEN
T Morrey =5[], 7R 5E T HARR T YR MR M AAAE — E R RAE.

SRTT, 24 A = 2Ln, 0 < ¢ < p < 1, X == MP ,(R") i}, EFE 45, 53 il 54 5351
de Almeida ] Tiago 7£ [28, Theorem 3.3. Remark 3.4 i1 Proposition 3.8] H115H, filif]
AL A RTE T3 1 48 SRR XS | - | agp ey MIPERIHCH. (R, X T
i A, HETHARE.
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ch-s6-appl2| Orlicz-Slice Spaces

BT, Zhang 28 A [106] 5 #J4E R™ _E5|NT Orlicz-slice Z5[], BH#E T [2] H slice
zS [ [29] HHEY Wiener- amalgam Z2JH]. M TASI N T Orlicz-slice (J5#B) Hardy 25 [H],
z}z [105, 106] HXfixX4ez R 3EAT T 5 B SLAR BB Y. & T Orlicz-slice 23] BE 2 ff
R, HEATSI [44, 45].
BREL @ : [0,00) — [0,00) BEFRH Orlicz & 4%, £ T ZAEEIN; ©0) = 0; MEZHM
€ (0,00), ®(t) > 0; I H. limyo0 ®(t) = 0. FHAFAEIETFE C, X TAERER s € [1,00) (8L
s€10,1]) It €[0,00), ®(st) < CsPO(t), MFREEL @ HA L (8 F) BN p. Orlicz =19
L®(R™) Z SUNFTVALE R LRSS f e

s =i {re 0.00): [ o (V) ar <1} <o

2.

EX 70, X A EMYE L € Z, q € (0,00), ® ;& Orlicz PREL. & &M Orlicz-slice =
B (Eg)e,a (R™) ESCN R™ _EFTARTIERE f 2

1
£ 1as 8, Lo @ny | ’
; § / dx < o0
17l )e amm) = U [ PR e

Hafk, Her B, 5(2)rh—2L.

WA SRR, € € Z, q € (0,00), ® /2 Orlicz Bi¥, HAIE ML pgy FIE_EAL pf . @itk
2L [106, Lemmas 2.28 1 4.5] Fififi FAIEIE, W LALEL (BL)e 4 (R™) BRI Banach PR
7], HHEALXESATEEL AT [97, Remark 8.14], GEUSIFH (E)ea(R™) il R
10 f1 12, Hrp X == (Bd)ga(R™), p— € (0, min{pg, ¢}, 6o € (0,p), po € (max{pg,q},oo),
p = min{p_,1}. FEE: FRIGUAT, KD ES (HES)AR") £x & &Rt Orlicz-
slice Hardy = 18], B E L5 E N 14 H—2 B X = (E§)ra(R™).

A, JB I ERE 270 334 34, 35, 564 58 M1 62 LLMMEIS 28, ¥ X BUN (EL)ea(RM),
AT LMREILL R 458,

ch-thorliczslice| EH! 71. i% A 2%, ( € Z, q € (0,00), ® JEHAIE N py Y Orlicz L. N

(1) ERE 27, 56, 58 f1 62 LAMAEIE 28 X X = (Eg)ea(R™) 2510007 ;

(if) FEF 33, 3471 35 X X 1= (B)ea(R") FI X € (rf=rs 00) LR

HC 72, HEHRHER TUR AN
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WileZ qge(0,1), ® ZEAIEFE py AIE LR p, WE 0 <py <pd <11

Orlicz PR%Y, 7FH
1 Inb
Aenn H(mm{pg,q} o) w2

it [97, Remark 8.14], F 15 (B )e,a(R™) /&5 X 14 (A A B, Hf X == (E§)a(R™),
p— € (0,min{pg, q}], 6o € (0,p-), po € (max{pg,q},o0). Jtt%, Wogo=1. —Jjm,
[106, Lemma 5.4], W15, X TAEEAR GRS {fr}re, A

<
; 1740 g, s =

XTAEER BeB
-eqorliczs| (38) ||lBH(Eg>)e,A(]Rn) 2 min {‘3’7 ’B|%} .
b b, MTAER Bl > [Bel 1) BEB A

H I ]® "
].B].x+B L‘PR" a
) oty = enipos] %}

Lo+, || L2 (mn)
1

> </ 1dx>q —|BJ.
B

F—Jr1H, TR 20 € R, k € Z H Byl < |Bil, » € Blao, X'), BB n € (0,p5),
199, Remark 4.21(iv)], T4 L2(R™) W2 (8% 10, bt X := LYR™), u = 1/n, p = 1.

[(Ed)e,a(R™)] %

JiIEE:
(40) a5l ey 2 NM Lo 5 gy
Xﬂ—ﬁ:'ff%‘f yex+ By ﬁ
1 B
(a1) Mltayi0)0) 2 s [ Ly ()2 2,
|Be| JovrB, | By

L (40)MI(41) 2215

n
[|Bk|

1/n
i) > 1Bul Lot o o

L®(R")

||1:L"0+Bk||zq>(Rn) =~

NI AIE Gy

”lm +B 1m+B ||L“1>R" ! !
o] (1) Mol - | [ [P

1o+ Bl Lo @n)
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ch—thorliczsliceQ‘

’ch—rerliczsliceQ‘

ch-s6-appl3

ch-6.13.x1

1

q 1

> / 1120+ B, | L2 (R i /
B(zo,\%) ||1a:+BeHL<I>(Rn)

1

> |By|' / Loy ~ | By
B(l‘o,)x{)

L (39)F1(42), ASCEI, M TEEN BeB A
11Bll(£2), 4 () 2 |B[V4 > |B| % |B| > | Bl
gt
1Bl(p1), @) 2 |BI'P2 2 |B|Y% 25 |B| < |By.

XAFE] T (38).

PRI, 8 450 53 F1 54 BYFTA G, % X = (B§)ea(R™) #Rir. W HEHR 45, 53
1 54, AIRLATF 4518,
L 73, WL eZ,qe(0,1), - H @ B—EHA N pgy FI LR py L0 <py <pj <1
() Orlicz BREL. MIZEER 27, 56 Fl 58 £ X BN (E§)ea(R™) BF&5R AT

YT T4, IR A = 2L, I, FEHL 73 (LR AH.

Lorentz 53Ji]

W p € (0,00] fl g € (0,00]. Lorentz =18 LP9(R"™) & LNFE R™ _ERAINREL f IF
BA LT AR
q (.1 ., q dt ‘ .
[T {pro) §] o
sup [t%f*(t)} if g=o00

te(0,00)

4R, Hep f* 2R f 193E#3g T4k, BIXTFAER ¢ € (0,00), &

(43) | £l zpa(mny =

fH () :={a e (0,00) : df(a) <1},

Hrfdg(a) :=={z e R": |f(z)| > a}| TR a € (0,00).

Hy [99, Remarks 2.7(ii), 4.21(ii), and 6.8(iv)], A5 LP9(R™) i /L8 X 14 (A (%
Hrp X := LPI(R™), p- € (0,p], 6o € (0,p), Fl po € (p,0), p := min{p_, 1}, I HEFL
XESAIIEL. TR, AR HYY(RY) 9 && F Hardy-Lorentz = 17, BHIE L
@SN 14 rth—5 B X = LPY(R™). it @R 27, 33+ 34, 35, 56+ 58 il 62 LANHEIL
28, X #egchy LPa(R™), ol IMG2I LN 4ie.
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~thlorentz | EH 75. & A &4, p € (0,00), H ¢ € (0,00]. N
(i) EFE 27, 56+ 58 fil 62 LLMZIEIS 287F X = LPI(R") I,
(i) EFE 33 34F1 35 7F X := LPYR"™) Al X € (2/ min{1, p}, 00) Bl 7.
¥ PR™) RN R™ B ATA T 0 & p(-) WL
(44) 0 < p_ :=essinfp(z) < esssupp(z) =: py < oo.

T€R™ zER?

Clo8(R™) % UM JE 4By 3 4k Holder % % 2RI R p(-) € P(R™) 24k, togh i,
F7HE Clog(p), Coo € (0,00) Hl poo € R {H18, X TALRE 2,y € R, £

Clo (p)
P(@) = PW)| < e =T
i
U
Ip(x) = pocl < oy

ch-3.23.x3| I 76. & p(-) € CY5(R™) 1 ¢ € (0,00). FHEHHEH 75(i) /& [71, Theorems 1 and
2] Fg— R, FEHH p(-) = p € (0,00), TER 75(ii) 2T [76, Theorems 2.7, 2.8 and
2.9] I ZER, K p € (0,1] BFERET KE] p € (0,00). EIAEFEHR Hardy-Lorentz
5[] LPC)4(R™) /2 BRkiL, Banach BR%LZ3 (A, {HJ2 [71, Theorems 1 and 2] Joik fi 2 27
il 62 G K. X2 AN Hardy-Littlewood i A8 748 LPO-4(R™) (U2 A LA F
FEABSRAR AN, S TCEIERR 12 78 X = LPOY(R™) JIETE.

AN, B qo € (max{p,q},1]. M [565, Theorem 6(iii)] A1 [40, Propostion 1.4.5(13)] %I,
FAAEIEREE C (615, W TERAEAAT ML {fle, A

q

00 % 00 % 00 ¢ % o
S ] :[znfkuA ] _ o[
1 L9090 (R™) P L,%t%” P A t%_l

a0 q
1,5

. 9
[e'e] a0 o0 a0
<C Tk =C E Jk
k=1 k=1 A
A q_ q_q
1,4¢p ! a5 BtP
q
(0.] a0
=C E Tk
P g
k=1 L9090 (R™)

Hrp A 5 [55, p.270] /) 6-7 17— 2, KXt LHRE

oo

> "
Db aq

k=1 L% 90 (R")

[e.e]
<
; Fll . oy = €
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AN, H(43), S TTE BeBAH

1
q 1B ey ¢ 1 . 1
alliraey = 4 2 [ 637 et = Bl > min {570, Bl
b Jo

R, BT et 45, 53 A1 54 BB e, Hrp X = LPY(R™). M HTEHR 45, 53 1 54,
ATLMS 2| LA N 2578,

[ch-thlorentz2| FH 77. # p e (0,1) H ¢ € (0,1), N;EH 45, 53 fl 54 Hol X BUK LPAR™) [Nk s7.

VI 78, TG A 1= 2Ly, S T7 HAEAHH.

bR Lebesgue %5 [H
STATRE p(-) € P(R"), 4547 Lebesgue = & LPO(R™) & SCWAE R™ b Al il i
f, 15
/ F@)P®) dz < oo
Rn

(92t FEIRAT BEEE | o (s RESINT:

. . , 1/ (@) ]7)
(45) £l ot ey == inf 4 A € (0, 00) : N de <1y,

# p(-) € C'°8(R™). Hy [99, Remarks 2.7(iv), 4.21(v), and 6.8(vii)], AJ1% LPC)(R™) ¥
JERE S 14 WA, Hp X = LPO(R™), p_ := p_, 6o € (0,p), M po € (p3, 0], p= I
by 5(44) 8, I EALA TSR Bk, AAES HDRY) h &6 Fik %
#¥ 4% Hardy %0, BHE L SEX 14 h—5, B X = LPORM). 1h4h, diEs 27, 33,
34, 35, 56, 58 Fl 62 LIRS 28 4% X Bk LPO(R™), 1T LSS LU R 4518

ch-thvariable | ®BH 79. % A B4, p() € C'og(R™). |

(i) 5EHE 27. 56. 58 fl 62 LAKAfEIE 28 BL X := LPO(R™) AT

(i) sZHE 33, 34 f1 35 B X == LPO(R™) 1 A € (2/min{1,p_},00) Mpgar, Hrfr p-
55(44) 3L,

TEIC 80. EHE 79(i) 1F [48, Theorems 1, 2, and 3, and Corollary 1] FH75%], TEHE 79(ii)
Mgt T [72, Theorems 6.1, 6.2, and 6.3] 1 A € (14 2/ min{2,p_},00) [HVEHEIZE] X €
(2/min{1, 5}, o0).
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h-s6-applb

ch-6.8.x2

ch-thmix

A B4, p(-) € Cl8(R™) Hili2 0 < p- <pr <1,

wemnl| () ).

i [99, Remarks 2.7(iv) and 4.21(v)] 15 LPO(R™) W& 5E S 14 1A%, Hp X =
LPO(R™), p_ € (0,p=], 6o € (0,p-), Fl po € (py,00). MAbh, Bl o € (pr,1]. — 7T, A
(102, Remark 2.1(iv)] 15, XHEEIEFAAMEES] {f}o, A

>

k=1

o0
Solfell s < »
k=1 Lo &) L % (Rn)

H—JTH, B45)F i, TR BeB A

L L L AL
HIBHLP(')(R") > min{|B‘P+7]B|p} > min{|B\QO,|B|00 }

Rlitk, LPO(R™) AL EHE 45 FFTA IR, H X = LPO(RY). XA OLT, £H 45,
53 Fl1 54 43 3I4E [67, Theorems 1, 2, and 3] H1155).

1EA758% Lebesgue 5¥[H]

B pi= (p1,....pn) € (0,00]". AEH Lebesgue F 1 LP(R™) [ & LT

P3

(16) [l = {/R [A{A|f<xl,...,xn>|pl dan}pl dx2] d}

MELL G {1,...,n}, p; = oo I, MU A —ME S

XTAEE 7 € (0,00, [ [104, p.2047] H] [47, Lemmas 3.2 and 4.4], 7]{§ LP(R™)
SRR L 14 BT IR, Heb X = IPR™), p_ = 5=, B € (0,5), po € (B0,00),
B = min{pr, o pu} F1 D o= min{L, 5=}, I HEAAHTESBIR. B R, KRS
HR(R™) g %@ Rt & 5e 4t Hardy % ), SHE LS E L 14 th—3, B X = LA(R).
AN, I EFE 27, 33, 344 35, 56, 58 il 62 LAKHEIE 28 i X HUN LP(R™), A LIG
LI 2518,

B 81. 1% A 24E, pe (0,00)". N
(1) *EF 27, 56+ 58 Ml 62 LAJZ3EE 28 £F X := LP(R™) Bjkiar;

(i) EFH 33, 34 135 £ X := LP(R™) Al A € (2/min{1,p_}, 00) M} paz, Hip p= o=
min{pi, ..., pn}-
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i 82, (i) FWEIEHIEFE 81(1) 7E [49, Theorems 3.4, 4.1, and 5.3 and Corollary
3.9] thi5#|, mEM 81(il) Kk T [47, Theorems 6.2, 6.3, and 6.4] H1 X € (1 +
2/ min{2,p=}, 00) HYEHIZ] X € (2/ min{1,p}, 00).

(i) ¥ @:= (a1,...,an) € [1,00]". Y58 81(1) HY

201 ( ... 0

0 2% ... (O
A=

0 0 ... 20n

[, SE4EE T [20] FRIHAGSET HE(R™) f55 B2 9 2 T AL

B 7€ (0,1)", W o € (¥, 1]. A (46) F1 68, (9)], 7%k TF (LR 67 AT Il i 4551
{fe}2, WUEE BeB, B

\m

>
k=1

Sfsl 7 <C
1 L0 (R™)

=}

L0 (R™)

fi
L L 1 L
el 2 min {1517 5175 | =i {1515, 1517 }.

Rt LP(R™) 5 2B HE 45 [ArA I, B X o= LP(R™). fEiXFpE ST, EFE 45, 53 il
54 43 HIAE [68, Theorems 3.1, 4.1, and 4.3] H11551.

AL Lebesgue %]
W p € (0,00] 1 w € Ax(A). M [99, Remarks 2.7(iii), 4.21(iii), and 6.8(v)] H
138 Lip(R™) W& 14 Ry Ak, Hd X = LLR™), p- € (0,p/qu], o €
(0, min{1,p_}) 1 p € (6o, 0), qu 5 (22) —Z, I HEALXIESANTEEL. 2Tk, AR
B4 HG(R™) & & Fit e Hardy = 18, BIYE S E L 14—, L X = Li,(R").
B X BUN Lh(R™), W HERE 27, 33, 34, 35, 56. 58 fil 62 LIMHES 28 AT LMERILLR

.
SEHL 83. % A B, p € (0,00), Hw e A (A). Il
(1) JEHE 27, 56+ 58 162 LAKAREIE 28 1E X = L, (R™) a7
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(i) EFE 33+ 34 135 £ X := LL,(R™) 1 A € (2/ min{1, qu/p}, 00) o7, HH g 5
(22) —%%.

@ Hid 84. FREEH EH 83(1) 2B, A 83(ii) MUt T [58, Theorems 2.14, 3.1, and
3.9] RN IEER, 4 p € (0,1] ITEMEY EE p € (0,00). #ATM, T4 X = LL(R™) i,
(24) FTREASE ST, BEIAERE 45+ 53 1 54 Toik M I T-HIAY Lebesgue 23 ).

@l Orlicz Z3[H]
# @ 2 Orlicz ML, HATIE FH py FIE B8 pr. A 99, Remarks 2.7(ii),
4.21(iv), and 6.8(vi)] H, 155 L®(R™) W& X 14 A HE%, b X .= LYRY),
p- € (0,pg], o € (0,min{pg,1}), po € (max{py,1},00), JFHEALEXTESIEEL +
Tk, ACEES HY(RY) K&k Fik Orlicz-Hardy 518, ©HIE L S5E L 14 Hh—3,
B X = LY(R"). i@ibi4 M 27, 33, 34, 35. 56, 58 fl 62 LAIES 28 g X Bl
L®(R™), A LMEFI AT 4518

h-thorlicz| EBH 85. 1% A J&f4H, ® j&— Orlicz %, HA T pg € (0,00). N
(i) ZEFE 27, 56 58 A 62 LAKAEWL 28 48 X = LO(R™) 7
(i) sEFE 33, 34 ] 35 #£ X := L®(R™) fl A € (2/min{1, pg},00) AFk7.

ch-3.27.x2| ¥Eid 86. FHEIE I EM 85(1) 2AWHY, M 85(ii) gt T [58, Theorems 2.14, 3.1, and
3.9] HAHMHYEEER, K pg € (0,1] RIVERET ] pg € (0,00).

IEAh, B go € (p, 1] U [106, Remarks 5.3] 1 [46, (25)], %4 FAEREAE S ATk 551
{fe}pe, MUERE Be B, A

> f

k=1

STl 2
k=1 [L® (Rm)] 0 [Lé(Rn)}%

i

1 1

I - 1 1
mmmm@zmeM%ﬁm%}meﬂB%AM%}

KIt, A EFE 45, 53 F1 54 ARG, o X = L2(R™). B ER 45, 53 Fl 54,
LM EI LA T 5548,

—thorlicz2| EBH 87. % ® & Orlicz B%L, H NR py FI LA p W2 0 < py < pd < 1. MIEH
45, 53 11 54 78 X B L*(R™) Wgar.

h-rerlicz2| JFic 88. FHEARHEHE 87 HIEY A = 205y, MHHLZ2HTY.
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